Handbook of mathematics for engineers and scienteists part 204 pps

7 61 0
Handbook of mathematics for engineers and scienteists part 204 pps

Đang tải... (xem toàn văn)

Thông tin tài liệu

T11.1. LINEAR EQUATIONS OF THE FIRST KIND WITH VARIABLE LIMIT OF INTEGRATION 1389 26.  x a  cos[λ(x – t)] + b  y(t) dt = f(x), f(a) =0. For b = 0, see equation T11.1.24. For b =–1, see equation T11.1.25. 1 ◦ . Solution for b(b + 1)>0: y(x)= f  x (x) b + 1 + λ 2 k(b + 1) 2  x a sin[k(x – t)]f  t (t) dt,wherek = λ  b b + 1 . 2 ◦ . Solution for b(b + 1)<0: y(x)= f  x (x) b + 1 + λ 2 k(b + 1) 2  x a sinh[k(x – t)]f  t (t) dt,wherek = λ  –b b + 1 . 27.  x a sin[λ(x – t)]y(t) dt = f(x), f(a) = f  x (a) =0. Solution: y(x)= 1 λ f  xx (x)+λf(x). 28.  x a sin  λ √ x – t  y(t) dt = f(x), f(a) =0. Solution: y(x)= 2 πλ d 2 dx 2  x a cosh  λ √ x – t  √ x – t f(t) dt. 29.  x a J 0  λ(x – t)  y(t) dt = f(x). Here, J ν (z) is the Bessel function of the first kind and f (a)=0. Solution: y(x)= 1 λ  d 2 dx 2 + λ 2  2  x a (x – t) J 1  λ(x – t)  f(t) dt. 30.  x a J 0  λ √ x – t  y(t) dt = f(x). Here, J ν (z) is the Bessel function of the first kind and f (a)=0. Solution: y(x)= d 2 dx 2  x a I 0  λ √ x – t  f(t) dt. 31.  x a I 0  λ(x – t)  y(t) dt = f(x). Here, I ν (z) is the modified Bessel function of the first kind and f(a)=0. Solution: y(x)= 1 λ  d 2 dx 2 – λ 2  2  x a (x – t) I 1  λ(x – t)  f(t) dt. 1390 INTEGRAL EQUATIONS 32.  x a I 0  λ √ x – t  y(t) dt = f(x). Here, I ν (z) is the modified Bessel function of the first kind and f(a)=0. Solution: y(x)= d 2 dx 2  x a J 0  λ √ x – t  f(t) dt. 33.  x a [g(x) – g(t)]y(t) dt = f(x). It is assumed that f(a)=f  x (a)=0 and f  x /g  x ≠ const. Solution: y(x)= d dx  f  x (x) g  x (x)  . 34.  x a [g(x) – g(t) + b]y(t) dt = f (x), f (a) =0. For b = 0, see equation T11.1.33. Solution for b ≠ 0: y(x)= 1 b f  x (x)– 1 b 2 g  x (x)  x a exp  g(t)–g(x) b  f  t (t) dt. 35.  x a [g(x) + h(t)]y(t) dt = f(x), f(a) =0. For h(t)=–g(t), see equation T11.1.33. Solution: y(x)= d dx  Φ(x) g(x)+h(x)  x a f  t (t) dt Φ(t)  , Φ(x)=exp   x a h  t (t) dt g(t)+h(t)  . 36.  x a K(x – t)y(t) dt = f(x). 1 ◦ .LetK(0)=1 and f(a)=0. Differentiating the equation with respect to x yields a Volterra equation of the second kind: y(x)+  x a K  x (x – t)y(t) dt = f  x (x). The solution of this equation can be represented in the form y(x)=f  x (x)+  x a R(x – t)f  t (t) dt.(1) Here the resolvent R(x) is related to the kernel K(x) of the original equation by R(x)=L –1  1 p  K(p) – 1  ,  K(p)=L  K(x)  , T11.2. LINEAR EQUATIONS OF THE SECOND KIND WITH VARIABLE LIMIT OF INTEGRATION 1391 where L and L –1 are the operators of the direct and inverse Laplace transforms, respectively.  K(p)=L  K(x)  =  ∞ 0 e –px K(x) dx, R(x)=L –1   R(p)  = 1 2πi  c+i∞ c–i∞ e px  R(p) dp. 2 ◦ .LetK(x) have an integrable power-law singularity at x = 0. Denote by w = w(x)the solution of the simpler auxiliary equation (compared with the original equation) with a = 0 and constant right-hand side f ≡ 1,  x 0 K(x – t)w(t) dt = 1.(2) Then the solution of the original integral equation with arbitrary right-hand side is expressed in terms of w as follows: y(x)= d dx  x a w(x – t)f(t) dt = f(a)w(x – a)+  x a w(x – t)f  t (t) dt. 37.  x a  g(x) – g(t) y(t) dt = f(x), f(a) =0, g  x (x) >0. Solution: y(x)= 2 π g  x (x)  1 g  x (x) d dx  2  x a f(t)g  t (t) dt √ g(x)–g(t) . 38.  x a y(t) dt  g(x) – g(t) = f(x), g  x (x) >0. Solution: y(x)= 1 π d dx  x a f(t)g  t (t) dt √ g(x)–g(t) . T11.2. Linear Equations of the Second Kind with Variable Limit of Integration 1. y(x) – λ  x a y(t) dt = f(x). Solution: y(x)=f(x)+λ  x a e λ(x–t) f(t) dt. 2. y(x) + λ  x a (x – t)y(t) dt = f (x). 1 ◦ . Solution for λ > 0: y(x)=f(x)–k  x a sin[k(x – t)]f (t) dt, k = √ λ. 2 ◦ . Solution for λ < 0: y(x)=f(x)+k  x a sinh[k(x – t)]f(t) dt, k = √ –λ. 1392 INTEGRAL EQUATIONS 3. y(x) + λ  x a (x – t) 2 y(t) dt = f(x). Solution: y(x)=f(x)–  x a R(x – t)f(t) dt, R(x)= 2 3 ke –2kx – 2 3 ke kx  cos  √ 3 kx  – √ 3 sin  √ 3 kx   , k =  1 4 λ  1/3 . 4. y(x) + λ  x a (x – t) 3 y(t) dt = f(x). Solution: y(x)=f(x)–  x a R(x – t)f(t) dt, where R(x)=  k  cosh(kx)sin(kx)–sinh(kx)cos(kx)  , k =  3 2 λ  1/4 for λ > 0, 1 2 s  sin(sx)–sinh(sx)  , s =(–6λ) 1/4 for λ < 0. 5. y(x) + A  x a (x – t) n y(t) dt = f(x), n =1, 2, 1 ◦ . Differentiating the equation n + 1 times with respect to x yields an (n+1)st-order linear ordinary differential equation with constant coefficients for y = y(x): y (n+1) x + An! y = f (n+1) x (x). This equation under the initial conditions y(a)=f(a), y  x (a)=f  x (a), , y (n) x (a)=f (n) x (a) determines the solution of the original integral equation. 2 ◦ . Solution: y(x)=f(x)+  x a R(x – t)f (t) dt, R(x)= 1 n + 1 n  k=0 exp(σ k x)  σ k cos(β k x)–β k sin(β k x)  , where the coefficients σ k and β k are given by σ k = |An!| 1 n+1 cos  2πk n + 1  , β k = |An!| 1 n+1 sin  2πk n + 1  for A < 0; σ k = |An!| 1 n+1 cos  2πk + π n + 1  , β k = |An!| 1 n+1 sin  2πk + π n + 1  for A > 0. 6. y(x) + λ  x a y(t) dt √ x – t = f(x). Abel equation of the second kind. This equation is encountered in problems of heat and mass transfer. Solution: y(x)=F (x)+πλ 2  x a exp[πλ 2 (x – t)]F (t) dt, where F (x)=f(x)–λ  x a f(t) dt √ x – t . T11.2. LINEAR EQUATIONS OF THE SECOND KIND WITH VARIABLE LIMIT OF INTEGRATION 1393 7. y(x) – λ  x 0 y(t) dt (x – t) α = f(x), 0<α <1. Generalized Abel equation of the second kind. 1 ◦ . Assume that the number α can be represented in the form α = 1 – m n ,wherem = 1, 2, , n = 2, 3, (m < n). In this case, the solution of the generalized Abel equation of the second kind can be written in closed form (in quadratures): y(x)=f(x)+  x 0 R(x – t)f (t) dt, where R(x)= n–1  ν=1 λ ν Γ ν (m/n) Γ(νm/n) x (νm/n)–1 + b m m–1  μ=0 ε μ exp  ε μ bx  + b m n–1  ν=1 λ ν Γ ν (m/n) Γ(νm/n)  m–1  μ=0 ε μ exp  ε μ bx   x 0 t (νm/n)–1 exp  –ε μ bt  dt  , b = λ n/m Γ n/m (m/n), ε μ =exp  2πμi m  , i 2 =–1, μ = 0, 1, , m – 1. 2 ◦ . Solution for any α from 0 < α < 1: y(x)=f(x)+  x 0 R(x – t)f(t) dt,whereR(x)= ∞  n=1  λΓ(1 – α)x 1–α  n xΓ  n(1 – α)  . 8. y(x) + A  x a e λ(x–t) y(t) dt = f(x). Solution: y(x)=f(x)–A  x a e (λ–A)(x–t) f(t) dt. 9. y(x) + A  x a  e λ(x–t) –1  y(t) dt = f(x). 1 ◦ . Solution for D ≡ λ(λ – 4A)>0: y(x)=f(x)– 2Aλ √ D  x a R(x – t)f(t) dt, R(x)=exp  1 2 λx  sinh  1 2 √ Dx  . 2 ◦ . Solution for D ≡ λ(λ – 4A)<0: y(x)=f(x)– 2Aλ √ |D|  x a R(x – t)f(t) dt, R(x)=exp  1 2 λx  sin  1 2  |D| x  . 3 ◦ . Solution for λ = 4A: y(x)=f(x)–4A 2  x a (x – t)exp  2A(x – t)  f(t) dt. 1394 INTEGRAL EQUATIONS 10. y(x) + A  x a (x – t)e λ(x–t) y(t) dt = f(x). 1 ◦ . Solution for A > 0: y(x)=f(x)–k  x a e λ(x–t) sin[k(x – t)]f (t) dt, k = √ A. 2 ◦ . Solution for A < 0: y(x)=f(x)+k  x a e λ(x–t) sinh[k(x – t)]f(t) dt, k = √ –A. 11. y(x) + A  x a cosh[λ(x – t)]y(t) dt = f(x). Solution: y(x)=f(x)+  x a R(x – t)f (t) dt, R(x)=exp  – 1 2 Ax   A 2 2k sinh(kx)–A cosh(kx)  , k =  λ 2 + 1 4 A 2 . 12. y(x) + A  x a sinh[λ(x – t)]y(t) dt = f(x). 1 ◦ . Solution for λ(A – λ)>0: y(x)=f(x)– Aλ k  x a sin[k(x – t)]f(t) dt,wherek =  λ(A – λ). 2 ◦ . Solution for λ(A – λ)<0: y(x)=f(x)– Aλ k  x a sinh[k(x – t)]f(t) dt,wherek =  λ(λ – A). 3 ◦ . Solution for A = λ: y(x)=f(x)–λ 2  x a (x – t)f(t) dt. 13. y(x) – λ  x 0 J 0 (x – t)y(t) dt = f(x). Here, J 0 (z) is the Bessel function of the first kind. Solution: y(x)=f(x)+  x 0 R(x – t)f (t) dt, where R(x)=λ cos  √ 1 – λ 2 x  + λ 2 √ 1 – λ 2 sin  √ 1 – λ 2 x  + λ √ 1 – λ 2  x 0 sin  √ 1 – λ 2 (x – t)  J 1 (t) t dt. T11.2. LINEAR EQUATIONS OF THE SECOND KIND WITH VARIABLE LIMIT OF INTEGRATION 1395 14. y(x) –  x a g(x)h(t)y(t) dt = f (x). Solution: y(x)=f(x)+  x a R(x, t)f(t) dt,whereR(x, t)=g(x)h(t)exp   x t g(s)h(s) ds  . 15. y(x) +  x a (x – t)g(x)y(t) dt = f(x). 1 ◦ . Solution: y(x)=f(x)+ 1 W  x a  Y 1 (x)Y 2 (t)–Y 2 (x)Y 1 (t)  g(x)f(t) dt,(1) where Y 1 = Y 1 (x)andY 2 = Y 2 (x) are two linearly independent solutions (Y 1 /Y 2 const) of the second-order linear homogeneous differential equation Y  xx + g(x)Y = 0. In this case, the Wronskian is a constant: W = Y 1 (Y 2 )  x – Y 2 (Y 1 )  x ≡ const. 2 ◦ . Given only one nontrivial solution Y 1 = Y 1 (x) of the linear homogeneous differential equation Y  xx +g(x)Y = 0, one can obtain the solution of the integral equation by formula (1) with W = 1, Y 2 (x)=Y 1 (x)  x b dξ Y 2 1 (ξ) , where b is an arbitrary number. 16. y(x) +  x a (x – t)g(t)y(t) dt = f(x). 1 ◦ . Solution: y(x)=f(x)+ 1 W  x a  Y 1 (x)Y 2 (t)–Y 2 (x)Y 1 (t)  g(t)f(t) dt,(1) where Y 1 = Y 1 (x)andY 2 = Y 2 (x) are two linearly independent solutions (Y 1 /Y 2 const) of the second-order linear homogeneous differential equation Y  xx + g(x)Y = 0. In this case, the Wronskian is a constant: W = Y 1 (Y 2 )  x – Y 2 (Y 1 )  x ≡ const. 2 ◦ . Given only one nontrivial solution Y 1 = Y 1 (x) of the linear homogeneous differential equation Y  xx +g(x)Y = 0, one can obtain the solution of the integral equation by formula (1) with W = 1, Y 2 (x)=Y 1 (x)  x b dξ Y 2 1 (ξ) , where b is an arbitrary number. 17. y(x) +  x a K(x – t)y(t) dt = f(x). Renewal equation. . 1  ,  K(p)=L  K(x)  , T11.2. LINEAR EQUATIONS OF THE SECOND KIND WITH VARIABLE LIMIT OF INTEGRATION 1391 where L and L –1 are the operators of the direct and inverse Laplace transforms, respectively.  K(p)=L  K(x)  =  ∞ 0 e –px K(x). T11.1. LINEAR EQUATIONS OF THE FIRST KIND WITH VARIABLE LIMIT OF INTEGRATION 1389 26.  x a  cos[λ(x – t)] + b  y(t) dt = f(x), f(a) =0. For b = 0, see equation T11.1.24. For b =–1, see equation. w(x)the solution of the simpler auxiliary equation (compared with the original equation) with a = 0 and constant right-hand side f ≡ 1,  x 0 K(x – t)w(t) dt = 1.(2) Then the solution of the original

Ngày đăng: 02/07/2014, 13:20

Tài liệu cùng người dùng

Tài liệu liên quan