1. Trang chủ
  2. » Khoa Học Tự Nhiên

Hệ thống bài tập chuyên đề phương trình lượng giác pot

6 657 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 454,5 KB

Nội dung

THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 Chuyên đề I. PHƯƠNG TRÌNH LƯỢNG GIÁC I. Phương trình lượng giác cơ bản Bài 1. Giải các phương trình lượng giác sau: a. 2sin 3x 3 6 π   − =  ÷   b. ( ) ( ) 0 0 sin 2x 45 c x 60 0os− + + = c. tan3x cot 2x= d. ( ) x cot c 2 0 os 2x-30= − e. 1 cosx.cos2x.cos4x.cos8x= 16 g. 4s inx+cosx = 2 sin x h. 2 cos( ) sinx x= Bài 2. Tìm nghiệm của các phương trình sau trên các khoảng đã cho: a. 0 tan(2x 15 ) 1− = , với ( ) 0 0 x 180 ;90∈ − b. s 3cinx = osx , với 2 x ; 3 π   ∈ − π ÷    Bài 3. Giải các phương trình a. 2 c c 2 os os x- 2 4   π π   =  ÷       b. ( ) sin c 1os2xπ = c. ( ) tan c 1 4 osx+sinx π   =     c. 3sinx + 4cosx = 5 Bài 4*. a. Tìm các nghiệm nguyên của phương trình: ( ) 2 c 3x 9x 160x 800 1 8 os π   − + + =     b. Tìm các nghiệm nguyên của phương trình 2 cos (3 9 16 80) 1 4 x x x π   − − − =     (ĐH An Ninh-2000) II. Phương trình bậc nhất, bậc hai đối với một hàm số lượng giác. Bài 5. Giải các phương trình a. 3 tan3x 3 0− = b. ( ) ( ) s 2c 0inx+1 os2x - 2 = c. 2 3 2 7 os2x - 3 = 0+sin x c d. 2 3 4 3 0− + =cot x cot x Bài 6. Giải các phương trình a. cos2x - sinx +2 =0 b. 2 2 2 3 + = tan x cot x c. 2 2 cos2x + sin x cosx +1 = 0+ d. 2 4 2 8 9 0 2 sin x cos x+ − = Bài 7. a. Tìm các nghiệm của phương trình 2 3 3 0sin x sin x+ = thỏa mãn 2 4 3 3 x ; π π   ∈     b. Tìm m để phương trình ( ) 2 2 1mtan x m t anx - 2 = 0+ − , có nghiệm duy nhất 2 2 x ; π π   ∈ −  ÷   III. Phương trình bậc nhất đối với sinx và cosx (asinx + bcosx = c) Bài 8. Giải các phương trình sau: a. 3cosx + 4sinx = -5 b. 5 2 6 13 2 sin x cos x− = c. 3cos2x - 2sinxcosx = 2sin7x d. sin8 cos6 3(sin 6 cos8 )x x x x− = + e. (3sin cos )(cos 2sin ) 1x x x x+ − = g. 2cos cos( ) 4sin 2 1 3 x x x π + + = Coppyright©dtruonghd@yahoo.com Hoàng Đức Trường 1 THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 Bài 9. Giải phương trình: a. 2 2 cos 2 3 sin cos 3sin 1x x x x+ + = . b. 3 3 4sin cos3 4cos sin3 3 3 cos 4 3x x x x x+ + = . (HV CNBCVT-2001). c. cos7 sin 5 3(cos5 sin 7 )x x x x− = − . d. 2 4sin ( ) sin 2 1 6 x x π + + = e. 2 2sin(2 ) 4sin 1 6 x x π + + = Bài 10. Tìm GTLN, GTNN của hàm số : a. 2 2 2sin ( ) 2cos cos 2 6 y x x x π = + + + b. 2sin( )cos( ) sin 2 6 3 y x x x π π = + + + c. 2sin(2 ) 4cos cos( ) 3 3 y x x x π π = + + + d. 6 6 sin cos sin 4y x x x= + + . Bai 11. Tìm GTLN và GTNN của hàm số : a. sin 2cos 1 sin cos 2 x x y x x + + = + + . b. sin cos 3 x y x = + c. 2 4sin 2 sin(2 ) 6 x y x π = + + . Bài 11’. Tìm các giá trị của x để 1 sin 2 cos x y x + = + là số nguyên. IV. Phương trình bậc thuần nhất đối với sinx và cosx Bài 12. Giải các phương trình: a. 2 6 2 2 sin x sinxcosx - cos x+ = b. 2 2 2 3 2 2 2 sin x sin2xcos2x + cos x− = c. 2 3 6 2 cos x sinxcosx = 3 + 3+ d. 2 4 3 3 2 2 4 2 sin x sin x cos x+ − = e. ( ) ( ) 4 4 1 3 s inxcos x - sin x cosx + 2sin x cos x + 2 2 π π π π     + + − =  ÷  ÷     Bài 13. Giải các phương trình a. ( ) 2 3 8 9 0 2 sin x s inxcosx + 8 3 cos x+ − = b. 2 1 2 2 2 sin x sin2x - cos x+ = c. ( ) ( ) 2 2 3 3 1 1 2 sin x s inxcosx + 3 cos x+ + − = − d. 4sinx + 6cosx = 1 cosx Bài 14. Giải các phương trình a. 2 2 4 3 3 sin x cos x sinx+ = b. 2sin 3 x = cos3x c. 3 2 4 sin x s inx π   + =  ÷   d. 2sin 3 x = cosx e. 3 3 sin cos sin cosx x x x+ = − g. 1 1 2 t anx sin x 1+tanx − = + Bài 15. Giải các phương trình a. 2 3 6 3 sin x sin x sin x cos x+ = b. 3 4 0sin x sin x cosx− + = c. 3 4 3 3 2 cos x sin x cosxsin x s inx=0− − + d. 3 2 sin 3cos 3sin cos 2sinx x x x x+ = + e. 3 cos2 sin cos cos sinx x x x x+ = + g. 3 sin 3 cos cos sinx x x x+ = + Coppyright©dtruonghd@yahoo.com Hoàng Đức Trường 2 THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 V. Phương trình đối xứng với sinx và cosx, đối xứng với tanx và cotx Bài 16. Gải các phương trình a. ( ) 3 2 2 3 0s inx+cosx sin x+ + = b. s inx - cosx + 4sinxcosx + 1 = 0 c. ( ) 2 12 12 0sin x s inx - cosx− + = d. 3 3 1sin x cos x+ = e. 1 + sin 3 2x + cos 3 2x = 3 4 2 sin x g. 3 4 3 sin x sin x cos x π   + = +  ÷   h. 1 t anx = 2 2 s inx+ i. sinx + 1 s inx + cosx + 1 cos x = 10 3 Bài 17. Giải các phương trình a. sin cos 4sin 2 1x x x− + = b. sin 1 cos 1 1x x+ + + = c. sin 2 2 sin 1 4 x x π   + − =  ÷   . d. 2 sin 3 cos3 sin cosx x x x+ − = + . e. 3 3 sin cos sin 2 sin cosx x x x x+ = + + .g. cos sin sin cos 1x x x x+ + = .(ĐH QGHN 97) Bài 18. Giải các phương trình a. ( ) ( ) t anx+7 t anx + co t x+7 cot x = -14 b. ( ) 2 2 1 tan cot t anx + cotx 1 2 x x+ − = c. 2 2 tan cot t anx + cotx 2x x+ − = ` d. 3 3 2 2 tan cot tan cot 1x x x x+ + + = e. 3 3 1 tan cot 3 sin 2 x x x + + = g. 3 tan 3 cot 4x x+ + + = . VI. Phương trình lượng giác khác Bài 19. Giải các phương trình a. cos5xcos3 = cosxcos7x b. sin2x - cos5x = cosx - sin6x c. cosx + cos11x = cos6x d. sinx + sin2x + sin3x = cosx + cos2x + cos3x e. tanx + tan2x = tan3x g. 2 sinx+sin3x+sin5x tan 3 osx+cos3x+cos5x x c = Bài 20. Giải các phương trình a. 2 2 2 5 2 3sin x sin x sin x+ = b. 3 3 4 5 2 2 2 2 cos x cos x cos x+ + = c. 8cos 4 x = 1 + cos4x d. sin 4 x + cos 4 x = cos4x e. 3cos 2 2x - 3sin 2 x + cos 2 x g. sin 3 xcosx - sinxcos 3 x = 2 8 h. ( ) ( ) 1 tan 1 sin 2 1 tanx x x− + = + i. tanx + tan2x = sin3xcosx Bài 21.(B1.43 +44 SBT Tr 15) Giải các phương trình a. tanx = 1- cos2x b. tan(x - 15 0 )cot(x - 15 0 ) = 1 3 c. sin2x + 2cos2x = 1 + sinx - 4cosx d. 3sin 4 x + 5cos 4 x - 3 = 0 e. (2sinx - cosx)(1 + cosx) = sin 2 x g. 1 + sinxcos2x = sinx + cos2x h. sin 2 xtanx + cos 2 xcotx - sin2x = 1 + tanx + cotx i. sin 2 x + sinxcos4x + cos 2 4x = 3 4 . VII. Tổng hợp các phương pháp giải phương trình lượng giác 1. Đặt ẩn phụ Áp dụng cho các loại phương trình : • Phương trình bậc hai, bậc ba… với một hàm số lượng giácPhương trình thuần nhất bậc hai, bậc ba đối với sinx và cosx (Đặt t = tanx) Coppyright©dtruonghd@yahoo.com Hoàng Đức Trường 3 THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 • Phương trình đối xứng với sinx, cosx (đặt t = sinx cosx ± ) ; đối xứng với tanx và cotx (đặt t = tanx cotx± ) • Một số phương trình khác……. VD1. Giải phương trình : x 2 osx = 2tan 2 c+ (đặt x t an 2 t = ) VD2. GPT : 2 sinx + 3 osx + 3 sinx + 3 osx c c = VD3. GPT : 2 2 4 2 2 os 9 os 1 os os c x c x c x c x     + + − =  ÷  ÷     (HD : Đặt t = 2 os os c x c x − ) VD4 . GPT : 6 6 sin cos sin 2 1x x x+ + = (đặt t sin2x) VD5. 3 8 os os3x 3 c x c π   + =  ÷   (Đặt t = 3 x π + ). VD6. 2 2 sin 2 sin sin 2 sin 1 0x x x x+ − + − + = Bài tập vận dụng : Bài 22. Giải các phương trình lượng giác sau 1. 1 3sin 2 2 tanx x+ = 2. ( ) ( ) 1 t anx 1 sin 2 1 tanxx− + = + 3. ( ) 2 2 t anx.sin 2sin 3 os2x+sinx.cosxx x c− = 4. 6 3cos 4sin 6 3cos 4sin 1 x x x x + + = + + 5. 2 4 tan 5 0 cos x x − + = 6. 2 2 4 2 2 cos cos 3 0 cos 3 cos x x x x   + − + − =  ÷   7. ( ) 2 2 2 4 4 tan 10 1 tan tan 0 cos x x x x + + + = 8. 2 cos cos cos sin 1x x x x+ + + = 9. 3 1 3 sin sin 10 2 2 10 2 x x π π     − = +  ÷  ÷     10. 2 cos9 2cos 6 2 0 3 x x π   + + + =  ÷   2. Biến đổi lượng giác • Sử dụng công thức hạ bậc • Đưa về phương trình tích VD1: 2 2 2 2 sin 3 cos 4 sin 5 cos 6x x x x− = − VD2: 2 2 21 sin 4 cos 6 sin 10 2 x x x π   − = +  ÷   VD3: 2 3 4 1 2cos 3cos 5 5 x x + = VD4: 3 2sin cos 2 cos 0x x x+ + = VD5: 2sin cot 2sin 2 1x x x + = + VD6: 2 2 7 sin cos 4 sin 2 4sin 4 2 2 x x x x π   − = − −  ÷   Coppyright©dtruonghd@yahoo.com Hoàng Đức Trường 4 THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 Bài tập vận dụng Bài 23 : Giải các phương trình 1. 3 3 3 cos 4 cos3 .cos sin sin 3x x x x x= + 2. 2 2 1 sin sin sin cos 2cos 2 2 4 2 x x x x x π   + − = −  ÷   3. 10 10 6 6 2 2 sin cos sin cos 4 4sin 2 cos 2 x x x x x x + + = + 4. cos cos3 2cos5 0x x x + + = 5. sin 3 sin5 3 5 x x = 6. ( ) ( ) 2 2sin 1 3cos 4 2sin 4 4cos 3x x x+ + − + = 3.Phương pháp không mẫu mực Vd1 : 4 4 sin cos cos2x x x+ = Vd2 : 2008 2009 sin cos 1x x+ = Vd3 : ( ) sin 3 cos sin 3 2x x x+ = Vd4 : 8 8 1 sin 2 cos 2 8 x x+ = Vd5 : 2 8cos 4 cos 2 1 sin 3 1 0x x x+ − + = Bài tập vận dụng Bài 24 : Giải các phương trình 1. 2 cos4 3cos 4sin 2 x x x− = 2. 3 3 cos sin 2cos 2 cos sin x x x x x − = + 3. ( ) 2 2 4 cos 3cos 1 2 3 tan 3tan 0x x x x+ + + + = 4. 2 2 2 2 2sin cos 4 sin cos 4x x x x= + 5. ( ) 2 2 sin cos 2 cot 2x x x+ = + VIII. Phương trình lượng giác trong một số đề thi ĐH 1. 1 1 7 4sin 3 sin 4 sin 2 x x x π π   + = −  ÷     −  ÷   (ĐH A-2008) 2. 3 3 2 2 sin 3cos sin cos 3sin .cosx x x x x x− = − (DH B-2008) 3. ( ) 2sin 1 cos2 sin 2 1 2cosx x x x+ + = + (ĐH D-2008) 4. ( ) ( ) 2 2 1 sin cos 1 cos sin 1 sin 2x x x x x+ + + = + (ĐH A - 2007) 5. 2 2sin 2 sin 7 1 sinx x x+ − = (ĐH B - 2007) 6. 2 sin cos 3 cos 2 2 2 x x x   + + =  ÷   (ĐH D - 2007) 7. ( ) 6 6 2 cos sin sin cos 0 2 2sin x x x x + − = − (ĐH A - 2006) 8. cot sin 1 tan tan 4 2 x x x x   + + =  ÷   (ĐH B - 2006) Coppyright©dtruonghd@yahoo.com Hoàng Đức Trường 5 THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 9. cos3 cos 2 cos 1 0x x x + − − = (ĐH D - 2006) 10. 2 2 cos 3 cos 2 cos 0x x x− = (ĐH A - 2005) 11. 1 sin cos sin 2 cos 2 0x x x x+ + + + = (ĐH B - 2005) 12. 4 4 3 cos sin cos sin 3 0 4 4 2 x x x x π π     + + − − − =  ÷  ÷     (ĐH D - 2005) 13. Tam giác ABC không tù thỏa mãn đk: ( ) cos2 2 2 cos cos 3x B C+ + = . Tính các góc của tam giác (ĐH A - 2004) 14. ( ) 2 5sin 2 3 1 sin tanx x x− = − (ĐH B - 2004) 15. ( ) ( ) 2cos 1 2sin cos sin 2 sinx x x x x− + = − (ĐH D - 2004) 16. 2 cos2 1 cot 1 sin sin 2 1 tan 2 x x x x x − = + − + (ĐH A - 2003) 17. 2 cot tan 4sin 2 sin 2 x x x x − + = (ĐH B - 2003) 18. 2 2 2 sin tan cos 0 2 4 2 x x x π   − − =  ÷   (ĐH D - 2003) 19. Tìm các nghiệm thuộc (0;2π) của pt: cos3 sin 3 5 sin cos 2 3 1 2sin 2 x x x x x +   + = +  ÷ +   (ĐH A - 2002) 20. 2 2 2 2 sin 3 cos 4 sin 5 cos 6x x x x− = − (ĐH B - 2002) 21. cos3 4cos 2 3cos 4 0x x x − + − = (ĐH D - 2002) 22. 1 1 sin 2 sin 2cot 2 2sin sin 2 x x x x x + − − = 23. ( ) 2 2cos 2 3 sin cos 1 3 sin 3 cosx x x x x+ + = + 24. 5 3 sin cos 2 cos 2 4 2 4 2 x x x π π     − − − =  ÷  ÷     25. sin 2 cos2 tan cot cos sin x x x x x x + = − 26. 2 2 sin cos 1 12 x x π   − =  ÷   27. 4 4 sin cos 1 1 cot 2 5sin 2 2 8sin 2 x x x x x + = − 28. 2 4 4 (2 sin 2 )sin3 tan 1 cos x x x x − + = 29. Cho phương trình 2sin cos 1 sin 2cos 3 x x m x x + + = − + (m là tham số). a. Giải phương trình với m = 1 3 b. Tìm m để pt có nghiệm 30. 2 1 sin 8cos x x = 31. ( ) 2 2 3 cos 2sin 2 4 1 2cos 1 x x x π   − − −  ÷   = − Coppyright©dtruonghd@yahoo.com Hoàng Đức Trường 6 . THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 Chuyên đề I. PHƯƠNG TRÌNH LƯỢNG GIÁC I. Phương trình lượng giác cơ bản Bài 1. Giải các phương trình lượng giác sau: a. 2sin 3x 3 6 π . 3 4 . VII. Tổng hợp các phương pháp giải phương trình lượng giác 1. Đặt ẩn phụ Áp dụng cho các loại phương trình : • Phương trình bậc hai, bậc ba… với một hàm số lượng giác • Phương trình thuần nhất. Hoàng Đức Trường 2 THPT LÊ XOAY BÀI TẬP LUYỆN TẬP CHUYÊN ĐỀ TOÁN 11 V. Phương trình đối xứng với sinx và cosx, đối xứng với tanx và cotx Bài 16. Gải các phương trình a. ( ) 3 2 2 3 0s inx+cosx

Ngày đăng: 01/07/2014, 21:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w