ISF – Welding Institute RWTH – Aachen University Lecture Notes Welding Technology Welding and Cutting Technologies Prof Dr.–Ing U Dilthey Table of Contents Chapter Subject Page Introduction 1 Gas Welding Manual Metal Arc Welding 13 Submerged Arc Welding 26 TIG Welding and Plasma Arc Welding 43 Gas– Shielded Metal Arc Welding 56 Narrow Gap Welding, Electrogas - and Electroslag Welding 73 Pressure Welding 85 Resistance Spot Welding, Resistance Projection Welding and Resistance Seam Welding 101 Electron Beam Welding 115 10 Laser Beam Welding 129 11 Surfacing and Shape Welding 146 12 Thermal Cutting 160 13 Special Processes 175 14 Mechanisation and Welding Fixtures 187 15 Welding Robots 200 16 Sensors 208 Literature 218 Introduction 2003 Introduction Welding fabrication processes are classified in accordance with the German Standards DIN 8580 and DIN 8595 in main group “Joining”, group 4.6 “Joining by Welding”, Figure 0.1 Forming Casting 4.1 Joining by composition 4.2 Joining by filling Cutting 4.3 Joining by pressing 4.4 Joining by casting Joining 4.5 Joining by forming 4.6.1 Pressure welding Coating 4.6 Joining by welding 4.7 Joining by soldering Changing of materials properties 4.8 Joining by adhesive bonding 4.6.2 Fusion welding br-er0-01.cdr Production Processes acc to DIN 8580 Figure 0.1 Welding: permanent, positive joining method The course of the strain lines is almost ideal Welded joints Screwing show therefore higher strength properties than the joint types depicted in Figure 0.2 This is of advantage, Riveting especially in the case of dynamic stress, as the notch effects are lower Adhesive bonding Soldering Welding br-er0-02.cdr © ISF 2002 Connection Types Figure 0.2 Introduction Figures 0.3 and 0.4 show the further subdivision of the different welding methods according to DIN 1910 Production processes Joining 4.6 Joining by welding 4.6.1 Pressure welding 4.6.2 Fusion welding 4.6.1.1 Welding by solid bodies 4.6.1.2 Welding by liquids 4.6.1.3 Welding by gas 4.6.1.4 Welding by electrical gas discharge 4.6.1.6 Welding by motion 4.6.1.7 Welding by electric current Heated tool welding Flow welding Gas pressure-/ roll-/ forge-/ diffusion welding Arc pressure welding Cold pressure-/ shock-/ friction-/ ultrasonic welding Resistance pressure welding © ISF 2002 br-er0-03.cdr Joining by Welding acc to DIN 1910 Pressure Welding Figure 0.3 Production processes Joining 4.6 Joining by welding 4.6.1 Pressure welding 4.6.2 Fusion welding 4.6.2.2 Welding by liquids 4.6.2.3 Welding by gas 4.6.2.4 Welding by electrical gas discharge 4.6.2.5 Welding by beam 4.6.2.7 Welding by electric current Cast welding Gas welding Arc welding Beam welding Resistance welding br-er0-04.cdr Joining by Welding acc to DIN 1910 Fusion Welding Figure 0.4 Gas Welding 2003 Gas Welding Although the oxy-acetylene process has been introduced long time ago it is still applied for its flexibility and mo4 bility Equipment for oxyacetylene welding consists of just a few elements, the energy necessary for welding can be transported in cylinders, Figure 1.1 oxygen cylinder with pressure reducer acetylene cylinder with pressure reducer oxygen hose acetylene hose welding torch welding rod workpiece welding nozzle welding flame br-er1-01.cdr Figure 1.1 density in normal state [kg/m ] 1.2 Suitable combustible gases are 1.29 1.17 1.43 0.9 oxygen oxygen and a combustible gas, Figure 2.0 propane exothermal chemical reaction between 2.5 2.0 1.5 1.0 0.5 air Process energy is obtained from the ignition temperature [OC] ral gas; here C3H8 has the highest 400 calorific value The highest flame in- 200 tensity from point of view of calorific 645 600 value and flame propagation speed is, however, obtained with C2H2 3200 propane 300 490 335 510 flame temperature with O2 flame efficiency with O flame velocity with O2 43 1350 2850 2770 air oxygen 645 natural gas C2H2, lighting gas, H2, C3H8 and natu- °C 10.3 370 8.5 330 KW k br-er1-02.cdr Figure 1.2 /cm2 cm /s © ISF 2002 Gas Welding C2H2 is produced in acetylene gas loading funnel generators by the exothermal transformation of calcium carbide with wa- material lock ter, Figure 1.3 Carbide is obtained from the reaction of lime and carbon in the arc furnace gas exit feed wheel C2H2 tends to decompose already at a pressure of 0.2 MPa Nonetheless, grille commercial quantities can be stored sludge when C2H2 is dissolved in acetone (1 l of acetone dissolves approx 24 l of C2H2 at 0.1 MPa), Figure 1.4 to sludge pit br-er1-03.cdr © ISF 2002 Acetylene Generator Figure 1.3 Acetone disintegrates at a pressure of acetone acetylene more than 1.8 MPa, i.e., with a filling pressure of 1.5 MPa the storage of 6m³ of C2H2 is possible in a standard cylinporous mass der (40 l) For gas exchange (storage and drawing of quantities up to 700 l/h) N a larger surface is necessary, therefore acetylene cylinder acetone quantity : ~13 l the gas cylinders are filled with a po- acetylene quantity : 6000 l rous mass (diatomite) Gas consump- cylinder pressure : 15 bar tion during welding can be observed from the weight reduction of the gas filling quantity : up to 700 l/h cylinder br-er1-04.cdr © ISF 2002 Storage of Acetylene Figure 1.4 Gas Welding Oxygen duced gaseous is by profrac- cooling tional distillation cylinder nitrogen air of liquid air and bundle stored in cylinders oxygen liquid air with a filling pres- pipeline liquid oxygen sure of up to 20 MPa, Figure 1.5 tank car nitrogen vaporized cleaning compressor For higher oxygen separation consumption, stor- supply br-er1-05.cdr age in a liquid state © ISF 2002 Principle of Oxygen Extraction and cold gasification is more profit- Figure 1.5 able The standard cylinder (40 l) contains, 50 l oxygen cylinder at a filling pressure of 15 MPa, 6m³ of protective cap cylinder valve O2 (pressureless state), Figure 1.6 gaseous take-off connection N Moreover, cylinders with contents of p = cylinder pressure : 200 bar 10 or 20 l (15 MPa) as well as 50 l at V = volume of cylinder : 50 l Q = volume of oxygen : 10 000 l 20 MPa are common Gas consumpcontent control tion can be calculated from the pres- Q=pV sure difference by means of the gen- foot ring eral gas equation manometer liquid safety valve vaporizer filling connection user still liquid br-er1-06.cdr Storage of Oxygen Figure 1.6 gaseous Gas Welding In order to prevent mistakes, the gas cylinders are colour-coded Figure 1.7 shows a survey of the present colour code and the future colour code which is in accordance with DIN EN 1089 The cylinder valves are also of show a thread right-hand union Acetylene different designs Oxygen cylinder connections actual condition nut DIN EN 1089 blue actual condition white DIN EN 1089 grey cylinder helium oxygen techn valves are equipped yellow brown grey blue (grey) brown red dark green grey with screw clamp acetylene retentions Cylinder valves for grey other argon a darkgreen left-hand vivid green grey grey combustible gases have hydrogen argon-carbon-dioxide mixture black grey grey darkgreen thread-connection nitrogen carbon-dioxide br-er1-07.cdr with a circumferen- © ISF 2002 Gas Cylinder-Identification according to DIN EN 1089 tial groove Figure 1.7 Pressure regulators reduce the cylinder pressure to the requested working pressure, Figures 1.8 and 1.9 cylinder pressure working pressure br-er1-08.cdr © ISF 2002 Single Pressure Reducing Valve during Gas Discharge Operation Figure 1.8 16 Sensors 213 Optical sensors can be used for a great number of jobs The easiest method is the recognition of the radiation intensity, which reflected is during welding E.g with laser beam welding, this is carried out recording flected through the relaser radiation with simple sensors for control of penetration depth, Figure 16.9 Figure 16.9 The procedure is based on the line-up between the degree of reflection and shaft relation (penetration depth/focus position) of the capillary The amount of backreflection of the laser beam power is measured, which due to multi-reflection is not absorbed by the workpiece Changes of penetration depth due to modified laser power or a shifted focus position can be identified by the signal of reflected laser power and can be used for control of the penetration depth However, optical sensors can also be used for measuring geometrical values Such information may be used for finding the start point of a seam, for seam tracking, and for identification of groove profile The two last mentioned functions provide the possibility to use the information for filling rate control and/or quality control Geometry-measuring optical sensors are normally external systems, which are positioned in front of the torch as a leading element It is practical to equip the sensor with additional axes, because both, torch and sensor, must be moved along the groove Without additional axes, a robot would be limited in its accessibility to the workpiece and in its working range Another problem is the tremendous effort to introduce the control-technical integration into the robot control Among other things, information must be exchanged in real time 16 Sensors 214 Most of geometry-measuring sensors use the triangulation principle or a variant of this measurement procedure The triangulation measurement procedure provides information about the distance to the workpiece surface A light spot is projected onto the workpiece surface and displayed to a line-type receiver element under a certain angle With distance changes emerge corresponding positions on the receiver element, Figure 16.10 Sensors which use this triangulation principle are applied for recognition of workpiece position and for offline seam finding Figure 16.10 Both, the laser scanner and the light-section procedure are based on the triangulation measurement principle With the laser scanner, Figure 16.11, this principle is complemen-ted by an oscillating axis in parallel to the groove axis The measurement of a sequence of distances along a line becomes possible and provides a 2-dimensional re- cord and evaluation of the groove contours Sensors as part of the light-section procedure, also Figure 16.11 16 Sensors 215 provide information about the 2-dimensional position of the groove As a function of this system, one or more light lines are projected onto the workpiece surface and displayed to a CCD matrix under a certain angle, Figure 16.12 In contrast to scanning, information about the groove profile is provided by taking a picture scene Using sensors, it is pssible to obtain additional 3-dimensional information through evaluation of more, in succession taken, while the camera moves over the grooves Systems, which generate their information through a projection of several light lines, provide additional information about the path of the seam and the orientation of the sensor related to the workpiece surface Both, scanning systems and sensors based on the light section procedure, can be used for recognition of the welded seam to make an automised quality control of the outer weld characteris- tics possible Figure 16.12 Another optical measurement prin- ciple uses, similar to human sight, the stereo procedure to record geometry information the weld Two optics the across groove independent photograph interesting Figure 16.13 16 Sensors 216 groove area and displays them onto two image converter elements (CCD-lines or CCD-matrix) Based on the corresponding image points in both picture scenes, the 3dimensional position of object points is evaluated Figure 16.13 shows the measurement principle, which uses CCD lines as image converter elements, and idealised signals for generating information The grey scale drop in the signal is ideally used as corresponding image area, which occurs with butt welds due to different reflection intensity between workpiece surface and gap Both, the lateral position of the groove and the distance to the sensor can be determined by evaluating the centre positions of both signal drops The width of the groove is taken from the width of the signal drop Optical sensors may also be used for geometrical recognition of the weld pool, to adapt process parame-ters in the case of possible deviations Figure 16.14 depicts such a system for use with laser beam welding The welding process is monitored by a CCD camera through a filter system An optical filter allows to observe the weld pool surface without disturbing effects of the plasma in the near infrared spectrum Picture data are transferred to an image processing computer which measures the geometry of the weld pool Geometry data contain information which is used online for control of the welding process Among others, penetration depth and focus position can be controlled The system also provides the recognition of protrusionwelded joints and welding defects like e.g molten ejections pool Figure 16.14 16 Sensors 217 During electron beam welding, the beam is in combination with a detector used for both, to carry out a seam tracking and a monitoring of the welded seam For this, the beam can be diverged as well as bent, Figure 16.15 Backscattered electrons are recognised by a special detector and converted into grey values The line or area surface scanning by the spotted electron beam provides a progressive series of greys across the scanned line or area During electron beam welding, these signals can be used for seam tracking by scanning an edge which is parallel to the groove The area-type scanning provides the possibility for observing the welded seam or the focus position Figure 16.15 Literature 218 Literature AicheIe, G u A.A Smith MAG-Schweißen DVS-Verlag GmbH, Düsseldorf 1975 Altmann, E., J Derse u A Farwer Sauerstoff-Plasmaschneiden von unleg Stahl - ein wirtschaftlicher und technologischer Vergleich DVS-Berichte, Bd 131, 1990 Baum, L u V Fichter Der Schutzgasschweißer, Teil 2: MIG/MAG-Schweißen DVS-Verlag GmbH, Düsseldorf 1982 Behnisch, H Das thermische Schneiden Technica 29, 1980, Heft Beyer, E Einfluß des laserinduzierten Plasmas beim Schweißen mit CO2-Lasern Schweißtechnische Forschungsberichte Bd DVS-Verlag GmbH, Düsseldorf 1985 Beyer, E u L Cleemann Schweißen mit CO2-Hochleistungslasern Technologie Aktuell 4, VDI-Verlag 1987 Blasig, K., U Lüttmann u H Nies Unterpulver-Engspaltschweißen mit dünnen Doppeldrahtelektroden – Adaptives Nahtführungssystem Industrie Anzeiger 109, 1987, Nr 82, S 30-32 Böhme, D., R Killing u R Helwig Beitrag zur Frage der günstigsten Stromart und Energieeinbringung beim Unterpulvertandemschweißen Schweißen und Schneiden 34, 1982, Heft 10 Cloos Romat Roboter ProgrammieranIeitung C Cloos Schweißtechnik, Haiger Derse, J Wasser-Injektions-Plasmaschneiden – ein neues Qualitätsverfahren Trennen u Fügen 17, 1986 Dickmann, K Lasertechnologie für die Materialbearbeitung Technica 10/1990 219 Literature Dilthey, U Programmieren von Industrierobotern DVS-Berichte Bd 118 DIN 1910 Teil 1, Mechanisierungsgrade in der Schweißtechnik, Juli 1983 DIN 1910 Blatt Schweißen, Widerstandsschweißen, Verfahren, Nov 1972 DIN 1913 Stabelektroden für das Verbindungsschweißen von Stahl, un- und niedriglegiert, Jan 1976 DIN 1732 Schweißzusatzwerkstoffe für Aluminium, Apr 1975 DIN 2310 Teil Thermisches Schneiden, Einteilung, Verfahren, Feb 1991 DIN 8555 Schweißzusatzwerkstoffe zum Auftragschweißen, Jan 1978 DIN 8556 Schweißzusatzwerkstoffe für das Schweißen nichtrostender und hitzebeständiger Stähle, März 1976 DIN 8573 Schweißzusatzwerkstoffe zum Schweißen von Gußeisen, Jan 1978 DIN 8575 Teil Schweißzusatzwerkstoffe zum Lichtbogenschwei8en warmfester Stähle, Dez 1983 DIN 8593 Teil Fertigungsverfahren Fügen, Fügen durch Schweißen, Einordnung, Unterteilung, Sept 1985 DIN 32511 Elektronen- und Laserstrahlverfahren zur Materialbearbeitung, Juni 1996 DIN EN 440 Schweißzusätze - Drahtelektroden und Schweißgut zum MetallSchutzgasschweißen von unlegierten Stählen und Feinkornstählen, Nov 1994 DIN EN 756 Schweißzusätze - Drahtelektroden und Draht-Pulver-Kombinationen zum Unterpulverschweißen von unlegierten Stählen und Feinkornstählen, Dez 1995 DIN EN 758 Schweißzusätze - Fülldrahtelektroden zum Metall Lichtbogenschweißen mit und ohne Schutzgas von unlegierten Stählen und Feinkornbaustählen, Mai 1997 DIN EN 760 Schweißzusätze - Pulver zum Unterpulverschweißen, Mai 1996 DIN EN 1089 Ortsbewegliche Gasflaschen - Gasflaschen-Kennzeichnung, Apr 1998 DIN ISO 857 Einteilung der Schutzgasverfahren, Juni 1996 220 Literature DIN EN 12070 Schweißzusätze - Drahtelektrode, Drähte und Stäbe zum Lichtbogenschweißen von warmfesten Stählen, Jan 2000 DIN EN 12072 Schweißzusätze - Drahtelektrode, Drähte und Stäbe zum Lichtbogenschweißen von nichtrostenden und hitzebeständigen Stählen, Jan 2000 DIN EN ISO 9692 Teil Schweißen und verwandte Verfahren - Schweißnahtvorbereitung Unterpulverschweißen von Stahl, Sept 1999 DIN EN ISO 11146 Laser und Laseranlagen - Prüfverfahren für Laserstrahlparameter, Sept 1999 EN ISO 9692 Teil Schweißen und verwandte Verfahren, Schweißnahtvorbereitung Unterpulverschweißen von Stahl, Apr 1998 Dorn, L u P Rippl Prozeßanalyse beim Unterpulverschweißen – Lichtbogenstabilität und Momentanwertverlauf der elektrischen Grưßen bei Änderung der Verfahrensparameter Schweißen und Schneiden 37, 1985, Heft Draugelates, U u J Krohn Plasma-Heißdraht-Auftragschwei8en von Hartlegierungen DVS-Bericht Band 81 DVS-Merkblätter, Widerstandsschweißtechnik, Fachbuchreihe Schwei8technik Band 68/III DVS-Verlag GmbH, Düsseldorf 1979 DVS-Merkblatt 0902, Lichtbogenbolzenschweißen mit Hubzündung DVS-Verlag GmbH, Düsseldorf 1988 DVS-Merkblatt 0903, Lichtbogenbolzenschweißen mit Spitzenzündung DVS-Verlag GmbH, Düsseldorf 1989 DVS-Merkblatt 0941, Fülldrahtelektroden für das Verbindungs- und Auftragschweißen, Grundlagen und Begriffsbestimmung DVS-Verlag GmbH, Düsseldorf Mai 1991 DVS-Merkblatt 2901, Teil 1, Abbrennstumpfschweißen DVS-Verlag GmbH, Düsseldorf 1988 DVS-Merkblatt 2909, Teil 1, Reibschweißen von metallischen Werkstoffen DVS-Verlag GmbH, Düsseldorf 1989 DVS Merkblatt, Rohrlängsnahtschweißen mit Rolltransformator DVS-Verlag GmbH, Düsseldorf 1974 DVS-Merkblatt 2934, Preßschweißen mit magnetisch bewegtem Lichtbogen 221 Literature DVS-Verlag GmbH, Düsseldorf 1987 Dynamit Nobel Sprengplattierte Verbundwerkstoffe Eichhorn, F Schweißtechnische Fertigungsverfahren, Bd 1, Schweiß- und Schneidtechnologien VDI-Verlag GmbH, Düsseldorf 1983 Eichhorn, F., K Blasig u H Nies Entwicklung eines Unterpulver-Engspaltschweißkopfes für Bandelektroden DVS-Berichte Bd 100, 1985, S 51-55 Eichhorn, F., E Engindeniz, D Pyrasch und J Remmel Einsatzmưglichkeiten des Elektrogas- und Elektroschlackeschweißens von Kehlnähten DVS-Berichte Bd 90, 1984, S 130-135 Eichhorn, F u H.W Langenbahn Spritzerfreies MAGM-Impulslichtbogenschweißen Schweißen und Schneiden 37, 1985 Eichhorn, F u J Remmel Leistungssteigerung des Elektroschlackeschweißverfahrens bei Verbindungen an niedriglegierten Stählen im Blechdickenbereich von 100 bis 250 mm Schweißen und Schneiden 37, 1985, Heft 11, S 573-579 Ellis, D.J Submerged-Arc Welding – An Update Welding and Metal Fabrication, Okt 1990 ESAB Firmenprospekt Eversheim, W u G Luscell Stand und Entwicklungstendenzen der Programmierung von Robotern zum Bahnschweißen Schweißen und Schneiden 42, 1990, Heft 2, S S.2ff Fischer, Baum Der Schutzgasschweißer, Teil 1: WIG-, Plasmaschweißen DVS-Schweißtechnische Praxis Band 11 Grix, H Tips für den Werkstoffpraktiker zum Gasschweißen und Flammlưten Praktiker 32, 1980, Heft 2, S 42-44 Grưger, P Engspaltschweißen fügt dicke Bleche 222 VDI-Nachrichten Nr 13, 1984, S 32 Gröger, P., G Groten, D Pyrasch u H Wietrzniok Neue Entwicklungen auf dem Gebiet des Schutzgas-Engspaltschweißens DVS-Bericht 127, 1989, S 112-119 Gröger, P u J Koivula Metall-Schutzgasschweißen – Verfahrensvarianten des Engspaltschweißens Industrie-Anzeiger 106, 1984, Nr 39, S 28-33 Grünauer, H Reibschweißen von Metallen Expert-Verlag, Ehningen 1987 HAANE Firmenprospekt Hase, C u W Reitze Lehrbuch des Gasschweißers und verwandte Autogenverfahren Verlag W Girardet, Essen 1980 Hirschherg, H Thermisches Schneiden, Stand der Entwicklung und Anwendung Technica 38, 1989, Heft 13, S 67-73 Hưrmann, E Hochfrequenz-Widerstandsschweißen mit Kontaktelektroden Schweißen und Schneiden 12, 1960, Heft 10, S 431-438 Hoult, A P Neuartige Erkenntnisse bei der Materialbearbeitung mit gepulsten Nd:YAG Hochleistungslasern im Kilowatt-Bereich Laser-Praxis, Juni 1989 Industrial Laser Review 1988 International Institute of Welding The Physics of Welding Pergamon Press, Frankfurt 1986 ISO 5182, Materials for resistance welding elektrodes and ancillary equipment, 1978 ISO 5184, Staight resistance spot welding electrodes, 1979 ISO 5821, Resistance spot welding electrode caps, 1979 Kessel, A Literature 223 Literature Wirtschaftliches Schneiden von Baustahlblechen mit Luft-Plasma von 10A bis 70A Metallhandwerk und Technik, 1987, Heft 9, S 743-744 Killing, R Handbuch der Schweißverfahren, Teil 1: Lichtbogenschweißverfahren DVS-Fachbuchreihe Bd.76, DVS-Verlag GmbH, Düsseldorf 1984 King, F.J Erhöhung des Mechanisierungsgrades beim maschinellen Lichtbogenschweißen durch Schweißkopf positionierung und Fugengeometrieerfassung Dissertation RWTH Aachen, 1977 Kosfeld, G Schweißverfahren DVS-Bericht Band 105 KUKA Firmenprospekt Laser Focus Annual Economic Survey – 1989 Mair, M Einfluß der Sauerstoffreinheit auf die Schneidgeschwindigkeit und die Schneidkosten beim Laserstrahlbrennschneiden DVS Berichte Bd 123, 1989 Marfels, W Der Gasschweißer Schweißtechnische Praxis Bd.I, DVS-Verlag GmbH, Düsseldorf 1982 Marfels, W Der Lichtbogenschweißer Schweißtechnische Praxis Bd.II, DVS-Verlag GmbH, Düsseldorf Marfels, W u A Schneider Vorrichtungen in der Schweißtechnik, Maßnahmen zur Rationalisierung der Fertigung DVS-Verlag GmbH, Düsseldorf 1989 Matzner, H.R Qualitätssteigerung beim spritzerarmen MAGM-Impulslichtbogenschweißen durch Regelung der Prozgrưßen – Schweißtechnische Forschungsberichte Bd 40 DVS-Verlag GmbH, Düsseldorf 1991 Meleka, A.H Electron – Beam Welding Published for the Welding Institute by McGraw-Hill, 1971 224 Literature N.N T.I.M.E – Das neue MAG-Hochleistungs-Schweißverfahren Firmenprospekt, Messer-Griesheim Metzbower, E.A., D.W Moon u F.W Fraser Laser welding of structural alloys Proceedings of International Conference on Welding Technology for Energy Applications, Gatlinburg, Tn, USA, May 1982 Meyer, C., A Rosenthal u V Bödecker Festkörperlaser im kW-Betrieb Industrie Anzeiger 51/1988 Müller, P u L Wolff Handbuch des Unterpulverschweißens Fachbuchreihe Schweißtechnik Bd.63 Neff, F., P Scherl, K Winter u H Ornig Neue Verfahren zum Schweißplattieren dickwandiger Stahlbleche und -behälter Schweißtechnik Berlin 7/74 Nies, H u H Krebs UP-Formschweißen mit Bandelektrode Oerlikon-Schweißmitteilungen März 1988 N.N Laserstrahltechnologien in der Schweißtechnik Fachbuchreihe Schweißtechnik, Bd 86, DVS-Verlag GmbH, 1989 Ortmann, R Werkstoffe zum Verschleißschutz DVS-Bericht Band 105 Pfeifer, L Fachkunde des Widerstandsschweißens Girardet-Verlag, Essen 1969 Plasma-Technik AG Plasma Spraying Technique Wohlen (Schweiz) 1974 Rabensteiner, G Werkstoffe zum Korrosionsschutz DVS-Bericht Band 105 Rasche, S 225 Neuere Entwicklungen beim Plasmaschneiden Trennen und Fügen, 1985, Heft 15, S 55-58 Ruckdeschel, W Plasmaheißdraht-Auftragschweißen – Ein neues Plattierungsverfahren DVS-Bericht Band 23/1972 Ruge, J Handbuch der Schweißtechnik, Bd II, Verfahren und Fertigung Springer-Verlag, Berlin Heidelberg New York 1980 Schäfer, P Industrielle Anwendungen von Festkưrperlasern Laser und Optoelektronik, 2/1988 Schellhase, M Der Schweißlichtbogen – ein technologisches Werkzeug VEB Verlag Technik, Berlin 1985 Schiller, S et al Elektronenstrahltechnologie Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1977 Schmidt, H u K Ludewig Hochleistungs-Festkörperlaser Laser und Optoelektronik, 2/1988 Schultz, H Elektronenstrahlschweißen DVS-Verlag, Düsseldorf, 1989 Seiler, P Schweißen mit YAG-Laser Feinwerktechnik & Messtechnik, 96 (1988) 7-8 SOUDOMETAL Firmenprospekt Taylor D.S u C.E Thornton High Deposition Rate Submerged-Arc Welding Welding Review, Aug 1989 Tong S u Z Ding Effect Of Plasma Spraywelding Technology On Dilution Wuhan (China) 1985 Tradowsky, Klaus Laser: Grundlagen, Technik, Basisanwendungen, Kamprath-Reihe Technik Literature 226 Literature Vogel-Uerlag Würzburg 1988 Wahl, W Auftragschweißen – Standzeitverlängerung durch gezielten Werkstoffeinsatz und optimale Schweißverfahren Schweißen und Schneiden 6/79 Yamamoto, H Recent Trends in Low Current Airplasma Cutting Welding International 55, 1987, S 35-43 ... MnMo S2Mo S3Mo S4Mo 1, 0 1, 5 2,0 Ni S2Ni1 S2Ni2 1, 0 1, 0 1, 0 2,0 NiMo S2NiMo1 S3NiMo1 1, 0 1, 5 1, 0 1, 0 NiV S3NiV1 1, 5 1, 0 NiCrMo S1NiCrMo2,5 S2NiCrMo1 S3NiCrMo2,5 0,5 1, 0 1, 5 2,5 1, 0 2,5 either an... Pressure Welding 85 Resistance Spot Welding, Resistance Projection Welding and Resistance Seam Welding 10 1 Electron Beam Welding 11 5 10 Laser Beam Welding 12 9 11 Surfacing and Shape Welding 14 6 12 ... by welding 4.6 .1 Pressure welding 4.6.2 Fusion welding 4.6 .1. 1 Welding by solid bodies 4.6 .1. 2 Welding by liquids 4.6 .1. 3 Welding by gas 4.6 .1. 4 Welding by electrical gas discharge 4.6 .1. 6 Welding