Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 33 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
33
Dung lượng
2,51 MB
Nội dung
Phơng trình , Bất phơng trình vôtỉ Bài 1: Giải phơng trình a) + = 3 3 1 2 2 1x x + = = + = 3 3 3 3 1 2 2 1 2 1 1 2 x x y x y x - Phơng trình đợc chuyển thành hệ = = = + = + = + = + = = + = = + + + = + = = = 3 3 3 3 3 3 2 2 3 1 1 2 1 2 1 2 1 5 2 1 2 2( ) 2 0( ) 1 5 1 2 2 x y x y x y x y x y x y y x x y x y x xy y vn x y x y - Vậy phơng trình đã cho có 3 nghiệm. b) + = + 2 2 1 1 (1 2 1 )x x x ĐS:x=1/2; x=1 c) + = + + 2 ( 3 2 1) 4 9 2 3 5 2x x x x x ĐS: x=2. d) + + + = 1 ( 3)( 1) 4( 3) 3 3 x x x x x ĐS: = = 1 13; 1 5x x e) + = + 2 2 1 1 2 2 4 ( )x x x x - Sử dụng BĐT Bunhia. f) + = 4 1 1 2x x x ĐS: x=0 Bài 2: Giải BPT: a) + 5 1 4 1 3x x x ĐS: x1/4 b) + > 2 2( 16) 7 3 3 3 x x x x x ĐK > 2 16 0 4 3 0 x x x - Biến đôỉ bất phơng trình về dạng + > > < > > < > 2 2 2 2 2( 16) 3 7 2( 16) 10 2 10 2 0 5 10 2 0 10 34. 10 34 5 2( 16) (10 2 ) x x x x x x x x x x x x - Kết hợp ĐK ta có nghiệm của BPT là > 10 34x . c) + > ( 1)(4 ) 2x x x . d) < 2 1 1 4 3 x x . ĐK: < < 2 1 0 1 4 0 2 1 0 0 2 x x x x - Thực hiện phép nhân liên hợp ta thu đợc BPT < + > < < > > 2 2 2 2 2 2 2 4 3(1 1 4 ) 3 1 4 4 3 3 4 4 3 0 1 1 4 0 1 2 2 4 3 0 3 9(1 4 ) (4 3) 4 9(1 4 ) (4 3) x x x x x x x x x x x x x x x - Kết hợp ĐK thu đợc nghiệm < < 1 0 2 1 0 2 x x Cách 2: - Xét 2 TH: 1 + Với < < 2 1 0. 1 4 1 3 2 x BPT x x + Với < > 2 1 0 . 1 4 1 3 2 x BPT x x e) 2 2 5 10 1 7 2x x x x+ + ĐK: 2 5 2 5 5 5 10 1 0 5 2 5 5 x x x x + + + - Với Đk đó 2 2 5 5 10 1 36 5 10 1x x x x + + + + + - Đặt 2 5 10 1; 0t x x t= + + . - ĐS: x-3 hoặc x1. Bài 3: Tìm m để phơng trình sau có nghiệm: 2 2 1 1x x x x m+ + + = . Giải: Xét hàm số 2 2 1 1y x x x x= + + + + Miền xác định D= R . + Đạo hàm + = + + + = + + = + + + > + + = + + 2 2 2 2 2 2 2 2 2 1 2 1 ' 2 1 2 1 ' 0 (2 1) 1 (2 1) 1 (2 1)(2 1) 0 (vo nghiem) (2 1) ( 1) (2 1) ( 1) x x y x x x x y x x x x x x x x x x x x x x + y(0)=1>0 nên hàm số ĐB + Giới hạn + = = + + + = 2 2 2 lim lim 1 1 1 lim 1. x x x x y x x x x y + BBT x - + y + y 1 -1 Vậy phơng trình có nghiệm khi và chỉ khi -1<m<1. Bài 4: Tìm m để phơng trình sau có nghiệm thực 2 1x x m+ = + Giải: - Đặt 1; 0t x t= + . Phơng trình đã cho trở thành: 2t=t 2 -1+m m=-t 2 +2t+1 - Xét hàm số y=-t 2 +2t+1; t0; y=-2t+2 x 0 1 + y + 0 - y 2 1 - - Theo yêu cầu của bài toán đờng thẳng y=m cắt ĐTHS khi m2. Bài 5: Tìm m để phơng trình sau có đúng 2 nghiệm dơng: 2 2 2 4 5 4x x m x x + = + . Giải: - Đặt 2 2 2 ( ) 4 5; '( ) ; '( ) 0 2 4 5 x t f x x x f x f x x x x = = + = = = + . Xét x>0 ta có BBT: x 0 2 + f(x) - 0 + f(x) 5 + 1 - Khi đó phơng trình đã cho trở thành m=t 2 +t-5 t 2 +t-5-m=0 (1). - Nếu phơng trình (1) có nghiệm t 1 ; t 2 thì t 1 + t 2 =-1. Do đó (1) có nhiều nhất 1 nghiệm t1. - Vậy phơng trình đã cho có đúng 2 nghiệm dơng khi và chỉ khi phơng trình (1) có đúng 1 nghiệm t (1; 5) . - Đặt g(t)=t 2 +t-5. Ta đi tìm m để phơng trình g(t)=m có đúng 1 nghiệm t (1; 5) . f(t)=2t+1>0 với mọi t (1; 5) . Ta có BBT sau: t 1 5 g(t) + g(t) 5 -3 Từ BBT suy ra -3<m< 5 là các giá trị cần tìm. Bài 6: Xác định m để phơng trình sau có nghiệm 2 2 4 2 2 ( 1 1 2) 2 1 1 1m x x x x x+ + = + + . Giải: - Điều kiện -1x1. Đặt 2 2 1 1t x x= + . - Ta có 2 2 2 4 1 1 0; 0 0 2 2 1 2 2; 2 1 x x t t x t x t t x + = = = = = - Tập giá trị của t là 0; 2 (t liên tục trên đoạn [-1;1]). Phơng trình đã cho trở thành: 2 2 2 ( 2) 2 (*) 2 t t m t t t m t + + + = + + = + - Xét 2 2 ( ) ;0 2. 2 t t f t t t + + = + Ta có f(t) liên tục trên đoạn 0; 2 . Phơng trình đã cho có nghiệm x khi và chỉ khi phơng trình (*) có nghiệm t thuộc 0; 2 0; 2 0; 2 min ( ) max ( )f t m f t . - Ta có 2 2 0; 2 0; 2 4 '( ) 0, 0; 2 ( ) 0; 2 . ( 2) Suy ra min ( ) ( 2) 2 1;ma x ( ) (0) 1 t t f t t f t NB t f t f f t f = + = = = = . - Vậy 2 1 1.m Bi 7: Tỡm m bt phng trỡnh 3 1mx x m + (1) cú nghim. 3 Giải: Đặt 3; [0; )t x t= − ∈ +∞ . Bất phương trình trở thành: 2 2 2 1 ( 3) 1 ( 2) 1 2 t m t t m m t t m t + + − ≤ + ⇔ + ≤ + ⇔ ≤ + (2) (1)có nghiệm (2) có nghiệm t≥0 có ít nhất 1 điểm của ĐTHS y= 2 1 2 t t + + với t≥0 không ở phía dưới đường thẳng y=m. Xét y= 2 1 2 t t + + với t≥0 có 2 2 2 2 2 ' ( 2) t t y t − − + = + t 1 3− − 0 1 3− + + ∞ y’ - 0 + | + 0 - y 3 1 4 + Từ Bảng biến thiên ta có m≤ 3 1 4 + . Bài 8: Tìm m để phương trình 3 6 (3 )(6 )x x x x m+ + − − + − = có nghiệm. Giải: Đặt ( ) 3 6t f x x x= = + + − với [ 3;6]x ∈ − thì 6 3 ' '( ) 2 (6 )(3 ) x x t f x x x − − + = = − + x -3 3/2 6 +∞ f’(x) ║ + 0 - ║ f(x) | 3 2 | 3 3 Vậy t [3;3 2]∈ . Phương trình (1) trở thành 2 2 9 9 2 2 2 t t t m t m − − = ⇔ − + + = (2). Phương trình (1) có nghiệm Phương trình (2) có nghiệm t [3;3 2]∈ đường thẳng y=m có điểm chung với đồ thị y= 2 9 2 2 t t− + + với t [3;3 2]∈ . Ta có y’=-t+1 nên có t 1 3 3 2 y’ + 0 - | - | y 3 9 3 2 2 − Bài 9: Cho bất phương trình 2 1 (4 )(2 ) (18 2 ) 4 x x a x x− + ≥ − + − . Tìm a để bất phương trình nghiệm đúng với mọi x ∈ [-2;4]. Giải: Đặt 2 (4 )(2 ) 2 8; [0;3]t x x x x t= − + = − + + ∈ . Bất phương trình trở thành: 4 2 2 1 (10 ) 4 10 4 t a t a t t≥ − + ⇔ ≥ − + .(2) (1)ghiệm (2) có nghiệm mọi t ∈ [0;3] đường thẳng y=a nằm trên ĐTHS y=t 2 -4t+10 với t ∈ [0;3] y’=2t-4; y’=0t=2 t 0 2 3 y’ | - 0 + | y 10 7 6 Vậy m≥10. Bài 10: Cho phương trình 4 2 2 2 ( 1)x x x m x+ + = + (1). Tìm m để phương trình có nghiệm. Giải: Phương trình đã cho tương đương 3 2 2 2 2 2 2 2 2 2 2 4( ) 4 ( 1) 4 2 2 4 2. ( ) 4 (1 ) (1 ) 1 1 x x x x x x x x m m m x x x x + + + + = ⇔ = ⇔ + = + + + + Đặt t= 2 2 1 x x+ ; t ∈ [-1;1]. Khi đó phương trình (1) trở thành 2t+t 2 =4m. (1) có nghiệm (2) có nghiệm t ∈ [-1;1] Xét hàm số y=f(t)=t 2 +2t với t ∈ [-1;1]. Ta có f’(t)=2t+2≥0 với mọi t ∈ [-1;1]. t -1 1 f’ 0 + | f 3 -1 Từ BBT -1≤4m≤3 1 3 4 4 m⇔ − ≤ ≤ . CHUYÊN ĐỀ : PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔTỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phương trình a) Phương pháp Thông thường nếu ta gặp phương trình dạng : A B C D+ = + , ta thường bình phương 2 vế , điều đó đôi khi lại gặp khó khăn hãy giải ví dụ sau ( ) 3 3 3 3 3 3 3 .A B C A B A B A B C+ = ⇒ + + + = và ta sử dụng phép thế : 3 3 A B C+ = ta được phương trình : 3 3 . .A B A B C C+ + = b) Ví dụ Bài 1. Giải phương trình sau : 3 3 1 2 2 2x x x x+ + + = + + Giải: Đk 0x ≥ Bình phương 2 vế không âm của phương trình ta được: ( ) ( ) ( ) 1 3 3 1 2 2 1x x x x x+ + + = + + , để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : 3 1 2 2 4 3x x x x+ − + = − + Bình phương hai vế ta có : 2 2 6 8 2 4 12 1x x x x x+ + = + ⇔ = Thử lại x=1 thỏa Nhận xét : Nếu phương trình : ( ) ( ) ( ) ( ) f x g x h x k x+ = + Mà có : ( ) ( ) ( ) ( ) f x h x g x k x+ = + , thì ta biến đổi phương trình về dạng : ( ) ( ) ( ) ( ) f x h x k x g x− = − sau đó bình phương ,giải phương trình hệ quả 5 Bài 2. Giải phương trình sau : 3 2 1 1 1 3 3 x x x x x x + + + = − + + + + Giải: Điều kiện : 1x ≥ − Bình phương 2 vế phương trình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : 3 2 1 . 3 1. 1 3 x x x x x x + + = − + + + , từ nhận xét này ta có lời giải như sau : 3 2 1 (2) 3 1 1 3 x x x x x x + ⇔ − + = − + − + + Bình phương 2 vế ta được: 3 2 2 1 3 1 1 2 2 0 3 1 3 x x x x x x x x = − + = − − ⇔ − − = ⇔ + = + Thử lại : 1 3, 1 3x x= − = + l nghiệm Qua lời giải trên ta có nhận xét : Nếu phương trình : ( ) ( ) ( ) ( ) f x g x h x k x+ = + Mà có : ( ) ( ) ( ) ( ) . .f x h x k x g x= thì ta biến đổi ( ) ( ) ( ) ( ) f x h x k x g x− = − 2. Trục căn thức 2.1. Trục căn thức để xuất hiện nhân tử chung a) Phương pháp Một số phương trình vôtỉ ta có thể nhẩm được nghiệm 0 x như vậy phương trình luôn đưa về được dạng tích ( ) ( ) 0 0x x A x− = ta có thể giải phương trình ( ) 0A x = hoặc chứng minh ( ) 0A x = vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh gía ( ) 0A x = vô nghiệm b) Ví dụ Bài 1 . Giải phương trình sau : ( ) 2 2 2 2 3 5 1 2 3 1 3 4x x x x x x x− + − − = − − − − + Giải: Ta nhận thấy : ( ) ( ) ( ) 2 2 3 5 1 3 3 3 2 2x x x x x− + − − − = − − v ( ) ( ) ( ) 2 2 2 3 4 3 2x x x x− − − + = − Ta có thể trục căn thức 2 vế : ( ) 2 2 2 2 2 4 3 6 2 3 4 3 5 1 3 1 x x x x x x x x x − + − = − + − + − + + − + Dể dàng nhận thấy x=2 là nghiệm duy nhất của phương trình . Bài 2. Giải phương trình sau (OLYMPIC 30/4 đề nghị) : 2 2 12 5 3 5x x x+ + = + + Giải: Để phương trình có nghiệm thì : 2 2 5 12 5 3 5 0 3 x x x x+ − + = − ≥ ⇔ ≥ Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng ( ) ( ) 2 0x A x− = , để thực hiện được điều đó ta phải nhóm , tách như sau : ( ) ( ) 2 2 2 2 2 2 2 2 4 4 12 4 3 6 5 3 3 2 12 4 5 3 2 1 2 3 0 2 12 4 5 3 x x x x x x x x x x x x x x − − + − = − + + − ⇔ = − + + + + + + + ⇔ − − − = ⇔ = ÷ + + + + Dễ dàng chứng minh được : 2 2 2 2 5 3 0, 3 12 4 5 3 x x x x x + + − − < ∀ > + + + + Bài 3. Giải phương trình : 2 33 1 1x x x− + = − 6 Giải :Đk 3 2x ≥ Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình ( ) ( ) ( ) ( ) 2 2 33 2 3 2 23 3 3 3 9 3 1 2 3 2 5 3 1 2 5 1 2 1 4 x x x x x x x x x x x − + + + − − + − = − − ⇔ − + = − + − + − + Ta chứng minh : ( ) ( ) 2 2 2 2 23 3 3 3 3 1 1 2 1 2 1 4 1 1 3 x x x x x + + + = + < − + − + − + + 2 3 3 9 2 5 x x x + + < − + Vậy pt có nghiệm duy nhất x=3 2.2. Đưa về “hệ tạm “ a) Phương pháp Nếu phương trình vôtỉ có dạng A B C+ = , mà : A B C α − = ở dây C có thể là hàng số ,có thể là biểu thức của x . Ta có thể giải như sau : A B C A B A B α − = ⇒ − = − , khi đĩ ta có hệ: 2 A B C A C A B α α + = ⇒ = + − = b) Ví dụ Bài 4. Giải phương trình sau : 2 2 2 9 2 1 4x x x x x+ + + − + = + Giải: Ta thấy : ( ) ( ) ( ) 2 2 2 9 2 1 2 4x x x x x+ + − − + = + 4x = − không phải là nghiệm Xét 4x ≠ − Trục căn thức ta có : 2 2 2 2 2 8 4 2 9 2 1 2 2 9 2 1 x x x x x x x x x x + = + ⇒ + + − − + = + + − − + Vậy ta có hệ: 2 2 2 2 2 0 2 9 2 1 2 2 2 9 6 8 2 9 2 1 4 7 x x x x x x x x x x x x x x = + + − − + = ⇒ + + = + ⇔ = + + + − + = + Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0 v x= 8 7 Bài 5. Giải phương trình : 2 2 2 1 1 3x x x x x+ + + − + = Ta thấy : ( ) ( ) 2 2 2 2 1 1 2x x x x x x+ + − − + = + , như vậy không thỏa mãn điều kiện trên. Ta có thể chia cả hai vế cho x và đặt 1 t x = thì bài toán trở nên đơn giản hơn Bài tập đề nghị Giải các phương trình sau : ( ) 2 2 3 1 3 1x x x x+ + = + + 4 3 10 3 2x x− − = − (HSG Toàn Quốc 2002) ( ) ( ) ( ) ( ) 2 2 5 2 10x x x x x− − = + − − 23 4 1 2 3x x x+ = − + − 2 33 1 3 2 3 2x x x− + − = − 2 3 2 11 21 3 4 4 0x x x− + − − = (OLYMPIC 30/4-2007) 2 2 2 2 2 1 3 2 2 2 3 2x x x x x x x− + − − = + + + − + 2 2 2 16 18 1 2 4x x x x+ + + − = + 2 2 15 3 2 8x x x+ = − + + 3. Phương trình biến đổi về tích Sử dụng đẳng thức 7 ( ) ( ) 1 1 1 0u v uv u v+ = + ⇔ − − = ( ) ( ) 0au bv ab vu u b v a+ = + ⇔ − − = 2 2 A B= Bài 1. Giải phương trình : 23 3 3 1 2 1 3 2x x x x+ + + = + + + Giải: ( ) ( ) 3 3 0 1 1 2 1 0 1 x pt x x x = ⇔ + − + − = ⇔ = − Bi 2. Giải phương trình : 2 23 3 3 3 1x x x x x+ + = + + Giải: + 0x = , không phải là nghiệm + 0x ≠ , ta chia hai vế cho x: ( ) 3 3 3 3 3 1 1 1 1 1 1 0 1 x x x x x x x x + + + = + + ⇔ − − = ⇔ = ÷ Bài 3. Giải phương trình: 2 3 2 1 2 4 3x x x x x x+ + + = + + + Giải: : 1dk x ≥ − pt ( ) ( ) 1 3 2 1 1 0 0 x x x x x = ⇔ + − + − = ⇔ = Bài 4. Giải phương trình : 4 3 4 3 x x x x + + = + Giải: Đk: 0x ≥ Chia cả hai vế cho 3x + : 2 4 4 4 1 2 1 0 1 3 3 3 x x x x x x x + = ⇔ − = ⇔ = ÷ + + + Dùng hằng đẳng thức Biến đổi phương trình về dạng : k k A B= Bài 1. Giải phương trình : 3 3x x x− = + Giải: Đk: 0 3x≤ ≤ khi đó pt đ cho tương đương : 3 2 3 3 0x x x+ + − = 3 3 1 10 10 1 3 3 3 3 x x − ⇔ + = ⇔ = ÷ Bài 2. Giải phương trình sau : 2 2 3 9 4x x x+ = − − Giải: Đk: 3x ≥ − phương trình tương đương : ( ) 2 2 1 3 1 3 1 3 9 5 97 3 1 3 18 x x x x x x x x = + + = + + = ⇔ ⇔ − − = + + = − Bài 3. Giải phương trình sau : ( ) ( ) 2 2 3 3 2 3 9 2 2 3 3 2x x x x x+ + = + + Giải : pttt ( ) 3 3 3 2 3 0 1x x x⇔ + − = ⇔ = II. PHƯƠNG PHÁP ĐẶT ẦN PHỤ 1. Phương pháp đặt ẩn phụ thông thường Đối với nhiều phương trình vôvôtỉ , để giải chúng ta có thể đặt ( ) t f x= và chú ý điều kiện của t nếu phương trình ban đầu trở thành phương trình chứa một biến t quan trọng hơn ta có thể giải được phương trình đó theo t thì việc đặt phụ xem như “hoàn toàn ” .Nói chung những phương trình mà có thể đặt hoàn toàn ( ) t f x= thường là những phương trình dễ . 8 Bài 1. Giải phương trình: 2 2 1 1 2x x x x− − + + − = Điều kiện: 1x ≥ Nhận xét. 2 2 1. 1 1x x x x− − + − = Đặt 2 1t x x= − − thì phương trình có dạng: 1 2 1t t t + = ⇔ = Thay vào tìm được 1x = Bài 2. Giải phương trình: 2 2 6 1 4 5x x x− − = + Giải Điều kiện: 4 5 x ≥ − Đặt 4 5( 0)t x t= + ≥ thì 2 5 4 t x − = . Thay vào ta có phương trình sau: 4 2 2 4 2 10 25 6 2. ( 5) 1 22 8 27 0 16 4 t t t t t t t − + − − − = ⇔ − − + = 2 2 ( 2 7)( 2 11) 0t t t t⇔ + − − − = Ta tìm được bốn nghiệm là: 1,2 3,4 1 2 2; 1 2 3t t= − ± = ± Do 0t ≥ nên chỉ nhận các gái trị 1 3 1 2 2, 1 2 3t t= − + = + Từ đó tìm được các nghiệm của phương trình l: 1 2 2 3 vaø x x= − = + Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện 2 2 6 1 0x x− − ≥ Ta được: 2 2 2 ( 3) ( 1) 0x x x− − − = , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : 2 3 4 5y x− = + và đưa về hệ đối xứng (Xem phần dặt ẩn phụ đưa về hệ) Bài 3. Giải phương trình sau: 5 1 6x x+ + − = Điều kiện: 1 6x≤ ≤ Đặt 1( 0)y x y= − ≥ thì phương trình trở thnh: 2 4 2 5 5 10 20 0y y y y y+ + = ⇔ − − + = ( với 5)y ≤ 2 2 ( 4)( 5) 0y y y y⇔ + − − − = 1 21 1 17 , 2 2 (loaïi)y y + − + ⇔ = = Từ đó ta tìm được các giá trị của 11 17 2 x − = Bài 4. (THTT 3-2005) Giải phương trình sau : ( ) ( ) 2 2004 1 1x x x= + − − Giải: đk 0 1x ≤ ≤ Đặt 1y x= − pttt ( ) ( ) 2 2 2 1 1002 0 1 0y y y y x⇔ − + − = ⇔ = ⇔ = Bài 5. Giải phương trình sau : 2 1 2 3 1x x x x x + − = + Giải: Điều kiện: 1 0x − ≤ < Chia cả hai vế cho x ta nhận được: 1 1 2 3x x x x + − = + Đặt 1 t x x = − , ta giải được. Bài 6. Giải phương trình : 2 4 23 2 1x x x x+ − = + 9 Giải: 0x = không phải là nghiệm , Chia cả hai vế cho x ta được: 3 1 1 2x x x x − + − = ÷ Đặt t= 3 1 x x − , Ta có : 3 2 0t t+ − = ⇔ 1 5 1 2 t x ± = ⇔ = Bài tập đề nghị Giải các phương trình sau 2 2 15 2 5 2 15 11x x x x− − = − + 2 ( 5)(2 ) 3 3x x x x+ − = + 2 (1 )(2 ) 1 2 2x x x x+ − = + − 2 2 17 17 9x x x x+ − + − = 2 3 2 1 4 9 2 3 5 2x x x x x− + − = − + − + 2 2 11 31x x+ + = 2 2 2 2 (1 ) 3 1 (1 ) 0 n n n x x x+ + − + − = 2 (2004 )(1 1 )x x x= + − − ( 3 2)( 9 18) 168x x x x x+ + + + = 3 2 2 1 2 1 3x x− + − = Nhận xét : đối với cách đặt ẩn phụ như trên chúng ta chỉ giải quyết được một lớp bài đơn giản, đôi khi phương trình đối với t lại quá khó giải 2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến : Chúng ta đã biết cách giải phương trình: 2 2 0u uv v α β + + = (1) bằng cách Xét 0v ≠ phương trình trở thành : 2 0 u u v v α β + + = ÷ ÷ 0v = thử trực tiếp Các trường hợp sau cũng đưa về được (1) ( ) ( ) ( ) ( ) . .a A x bB x c A x B x+ = 2 2 u v mu nv α β + = + Chúng ta hãy thay các biểu thức A(x) , B(x) bởi các biểu thức vôtỉ thì sẽ nhận được phương trình vôtỉ theo dạng này . a) . Phương trình dạng : ( ) ( ) ( ) ( ) . .a A x bB x c A x B x+ = Như vậy phương trình ( ) ( ) Q x P x α = có thể giải bằng phương pháp trên nếu ( ) ( ) ( ) ( ) ( ) ( ) .P x A x B x Q x aA x bB x = = + Xuất phát từ đẳng thức : ( ) ( ) 3 2 1 1 1x x x x+ = + − + ( ) ( ) ( ) 4 2 4 2 2 2 2 1 2 1 1 1x x x x x x x x x+ + = + + − = + + − + ( ) ( ) 4 2 2 1 2 1 2 1x x x x x+ = − + + + ( ) ( ) 4 2 2 4 1 2 2 1 2 2 1x x x x x+ = − + + + Hãy tạo ra những phương trình vôtỉ dạng trên ví dụ như: 2 4 4 2 2 4 1x x x− + = + Để có một phương trình đẹp , chúng ta phải chọn hệ số a,b,c sao cho phương trình bậc hai 2 0at bt c+ − = giải “ nghiệm đẹp” Bài 1. Giải phương trình : ( ) 2 3 2 2 5 1x x+ = + Giải: Đặt 2 1, 1u x v x x= + = − + 10 [...]... Bài 1: Bình phương hai vế : a) x2 + x + 1 = 1 Hd: pt x = 0 1 − ≤ x ≤1 ⇔x =−1 4 2 x −2 x − x = 0 x = 1 ± 5 2 b )pt: 5x − 1 − 3x − 2 − x − 1 = 0 dk : x ≥ 1 - Chuyển vế ,bình phương hai vế : x =2 ; x = 2/11( loại ) Vậy x=2 pt : x + 9 = 5 − 2 x + 4 c) dk : x ≥ 2 Bình phương hai lầ ta có :ĐS pt : 16 − x + 9 + x = 7 d) Ds : x = 0; −7 e) x =0 pt : (4 x − 1) x 2 + 9 = 2 x 2 + 2 x + 1 dk : x... 2 x + 1 ; y= 3 2 x + 2 ; y= 3 2 x + 3 ĐB Bài 4 : Giải pt 2 x2 + 8x + 6 + x2 − 1 = 2 x + 2 ĐK : x ≤-3,x=-1,x≥1 -Với x=-1 Thoả mãn pt -Với x≤-3 thì VPt =1 = x =1; 2 = > x + 1−x =0 x + 1− x ; t ≥ 0 => x − x 2 = t 2 −1 2 pt t2-3t +2 =0 t =1 ; t=2 Vn t=1 x=0 ; x=1 c) 2 x + 3 + x +1 = 3 x + 2 2 x 2 + 5 x + 3 −16 HDĐS: x ≥ −1 ĐK : t = 2x + 3 + x + 1 ≥ 0 => t 2 = 3 x + 4 + 2 2 x 2 + 5 x + 3 pt t = 5 x = 3 27 d ) x 2 + x + 7 + x 2 + x + 2 = 3x 2 + 3x +19 t = x 2 + x + 2 ≥ 7 / 4 pt t + 5 + t = 3t +13... = 3 2 x − 3 -Lập phương hai vế ta có : pt x=1 ; x=2 ;x=3/2 Thử lại Đều thoả 4) 3 2 X + 2 + 3 X − 2 = 3 9 x 28 Lập phương hai vế ta có : pt x=0 ; x=3 ;x=-6/5 Thử lại Đều thoả 5) 3 ( X + a ) 2 + + 3 X 2 − a 2 = 2 3 ( x − a) 2 a ≠ 0 pt 18X = 14a x=7a/ 9 ; a# 0 Thử lại thoả II- PHƯƠNG TRÌNH CĂN THỨC CHỨA THAM SỐ m : Bài 1: HdĐS : 2 x + 1 = x + m : BLs ngh pt D = [ −1; +∞ ) − xet : f ( x) = 2 x... đó ptt: 2 ( sin 2t = − 1 sin x 2 Phương trình có nghiệm : x = − 2 3 + 1 1 2 Bài 4 .Giải phương trình x 1 + ( ) 2 x 2 + 1 ( x + 1) x +1 = + 2x 2x ( 1 − x2 ) 2 Bài 5 Giải phương trình : Giải: đk x ≠ 0, x ≠ ±1 2 π π ; ÷ 2 2 2 Khi đó pttt 2sin t cos 2t + cos 2t − 1 = 0 ⇔ sin t ( 1 − sin t − 2sin t ) = 0 Ta có thể đặt : x = tan t , t ∈ − Kết hợp với điều kiện ta có nghiệm x = 1 3 Bài tập tổng. .. 14 −2 + 14 (loại) ;x = 3 3 KL : Pt có 3 nghiệm Bài 6 : (HV CNBCVT) Giải pt Giải : ĐK : x≥2/3 Trục căn thức ta được x + 3 = 4 x + 1 − 3x − 2 = x+3 5 x+3 ( 4 x + 1 + 3 x − 2) ⇔ 4 x + 1 + 3 x − 2 = 5 5 PT trên có nghiệm x=2 HS y= 4 x + 1 + 3 x − 2 ĐB do vậy x=2 là nghiệm duy nhất Bài 7: Giải phương trình 3(2 + ĐK: x≥2 x − 2) = 2 x + x + 6 ⇔ 2(3 − x) = x + 6 − 2 x − 2 pt ⇔ 2(3 − x)( x + 6 + 2 x − 2)... KsHS f (t ) = − t + 2t + 9 ; o ≤ t ≤ 9 / 2 Ds − 9 / 4 ≤ m ≤ 10 d) x4 + 4x + m + 4 x4 +4 x + m = 6 t = 4 x 4 +4 x +m ≥0 pt : t 2 +t −6 =0 HDĐS:Đặt : 3 t =− l < > = t =2 = 4 x 4 +4 x +m = 2 > < > m =−x 4 −4 x +16 = Lập BBT : m>19VN; m=19: 1 ngh ;m0 A ≥B 2 • Dạng khác : - Có nhiều căn thức :Đặt ĐK – Luỹ thừa- khử căn – Dưa vể bpt cơ bản như các dạng trên Chú ý : - Hai vế không âm ta đ7ợc bình phương – Hai vế là số thực ta đựơc lập phương BÀI TẬP : GIẢI CÁC BẤT PHƯƠNG TRÌNH 1 -Pt : 2 x + 3 ≥ x − 2 pt -3/2 ≤ x ≤ 3 + 2 2 29 PHƯƠNG TRÌNH CĂN THỨC III PHƯƠNG PHÁP BIỂN ĐỔI TƯƠNG ĐƯƠNG x ∈ D (*) Dạng 1 : Phương trình... phương trình lượng giác đơn giản: cos3t = sin t , ta có thể tạo ra được phương trình vơtỉ Chú ý : cos3t = 4cos3 t − 3cos t ta có phương trình vơ tỉ: 4 x 3 − 3 x = 1 − x 2 (1) Nếu thay x bằng 1 ta lại có phương trình : 4 − 3 x 2 = x 2 x 2 − 1 x (2) Nếu thay x trong phương trình (1) bởi : (x-1) ta sẽ có phương trình vốtỉ khó: 4 x 3 − 12 x 2 + 9 x − 1 = 2 x − x 2 (3) Việc giải phương trình (2) và (3) khơng . x x x x+ + = + + Giải : pttt ( ) 3 3 3 2 3 0 1x x x⇔ + − = ⇔ = II. PHƯƠNG PHÁP ĐẶT ẦN PHỤ 1. Phương pháp đặt ẩn phụ thông thường Đối với nhiều phương trình vô vô tỉ , để giải chúng ta có. dựng phương trình vô tỉ dựa theo hàm đơn điệu Dựa vào kết quả : “ Nếu ( ) y f t= là hàm đơn điệu thì ( ) ( ) f x f t x t= ⇔ = ” ta có thể xây dựng được những phương trình vô tỉ Xuất phát từ. ) 2. Xây dựng phương trình vô tỉ bằng phương pháp lượng giác như thế nào ? Từ công phương trình lượng giác đơn giản: cos3 sint t= , ta có thể tạo ra được phương trình vô tỉ Chú ý : 3 cos3 4cos