1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

DISCRETE  EVENT SIMULATIONS –  DEVELOPMENT AND  APPLICATIONS   pot

208 237 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 208
Dung lượng 5,85 MB

Nội dung

DISCRETE EVENTSIMULATIONS– DEVELOPMENTAND APPLICATIONS  EditedbyEldinWeeChuanLim  Discrete Event Simulations – Development and Applications http://dx.doi.org/10.5772/2585 Edited by Eldin Wee Chuan Lim Contributors Giulia Pedrielli, Tullio Tolio, Walter Terkaj, Marco Sacco, Wennai Wang, Yi Yang, José Arnaldo Barra Montevechi, Rafael de Carvalho Miranda, Jonathan Daniel Friend, Thiago Barros Brito, Rodolfo Celestino dos Santos Silva, Edson Felipe Capovilla Trevisan, Rui Carlos Botter, Stephen Wee Hun Lim, Eldin Wee Chuan Lim, Igor Kotenko, Alexey Konovalov, Andrey Shorov and Weilin Li Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Mirna Cvijic Typesetting InTech Prepress, Novi Sad Cover InTech Design Team First published September, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from orders@intechopen.com Discrete Event Simulations – Development and Applications, Edited by Eldin Wee Chuan Lim p. cm. ISBN 978-953-51-0741-5 Contents Preface IX Section 1 Fundamental Development and Analyses of the Discrete Event Simulation Method 1 Chapter 1 Distributed Modeling of Discrete Event Systems 3 Giulia Pedrielli, Tullio Tolio, Walter Terkaj and Marco Sacco Chapter 2 The Speedup of Discrete Event Simulations by Utilizing CPU Caching 47 Wennai Wang and Yi Yang Chapter 3 Sensitivity Analysis in Discrete Event Simulation Using Design of Experiments 63 José Arnaldo Barra Montevechi, Rafael de Carvalho Miranda and Jonathan Daniel Friend Section 2 Novel Integration of Discrete Event Simulation with Other Modeling Techniques 103 Chapter 4 Discrete Event Simulation Combined with Multiple Criteria Decision Analysis as a Decision Support Methodology in Complex Logistics Systems 105 Thiago Barros Brito, Rodolfo Celestino dos Santos Silva, Edson Felipe Capovilla Trevisan and Rui Carlos Botter Section 3 Applications of Discrete Event Simulation Towards Various Systems 133 Chapter 5 Human Evacuation Modeling 135 Stephen Wee Hun Lim and Eldin Wee Chuan Lim Chapter 6 Discrete-Event Simulation of Botnet Protection Mechanisms 143 Igor Kotenko, Alexey Konovalov and Andrey Shorov VI Contents Chapter 7 Using Discrete Event Simulation for Evaluating Engineering Change Management Decisions 169 Weilin Li Preface With rapid advancements in computing power, computer modeling and simulations have become an important complement to experimentations in many areas of research as well as industrial applications. The Discrete Event Simulation (DES) method has received widespread attention and acceptance by both researchers and practitioners in recent years. The range of application of DES spans across many different disciplines and research fields. In research, further development and advancements of the basic DES algorithm continue to be sought while various hybrid methods derived by combining DES with other simulation techniques continue to be developed. This book presents state-of-the-art contributions on fundamental development of the DES method, novel integration of the method with other modeling techniques as well as applications towards simulating and analyzing the performances of various types of systems. This book will be of interest to undergraduate and graduate students, researchers as well as professionals who are actively engaged in DES related work. There are nine chapters in this book that are organized into three sections. The first section comprises three chapters that report recent studies on fundamental development and analyses of the DES method. In Chapter 1, Pedrielli and co-authors introduce a distributed modeling approach that allows complex discrete event systems that would otherwise not be practicable to model using conventional simulation techniques to be modeled efficiently. Wang and Yang discuss in Chapter 2 various approaches for fast event scheduling for simulations of large-scale networks. They report the results of computational experiments that demonstrate the performance of a cache aware algorithm to be better than that of a conventional Calendar Queue. In Chapter 3, Montevechi and co-authors present the application of factorial design statistical techniques for identifying significant variables in discrete event simulation models with a view towards speeding up simulation optimization processes. The approach of integrating DES with various modeling techniques has also attracted the interests of several researchers throughout the world in recent years. In the second section of this book, two chapters on work conducted in this area are presented. Ortega discusses in Chapter 4 a simulation platform that combines DES with stochastic simulation and multi-agent systems for modeling holonic manufacturing systems. Brito describes in Chapter 5 a decision support system that was developed by combining DES with Multiple Criteria Decision Analysis. The application of such a X Preface hybrid decision support system towards analysis of a steel manufacturing plant is illustrated. The final section of this book is devoted to contributions reporting applications of DES towards various systems. Lim and Lim describe simulations of human evacuation processes using a discrete approach for modeling individual human subjects in Chapter 6. Kotenko and co-authors report the development of a DES based environment for analyses of botnets and evaluation of defense mechanisms against botnet attacks in Chapter 7. In Chapter 8, Li proposes a comprehensive DES model that is able to capture the various complexities associated with new product development projects as well as take into account engineering changes that arise stochastically during the course of such projects. In the final chapter of this book, Klug focuses on project management issues that are of relevance to simulation projects in general. This book represents the concerted efforts of many individuals. First and foremost, I would like to take this opportunity to acknowledge the efforts of all authors who have contributed to the success of this book project. I would also like to thank the support provided by Ms. Mirna Cvijic of InTech Open Access Publisher, without which the publication of this book would not have been possible. Last but certainly not least, and on behalf of all contributing authors, I wish to express my sincere appreciation and gratitude towards InTech Open Access Publisher for transforming this book project from inception to reality. Eldin Wee Chuan Lim Department of Chemical & Biomolecular Engineering, National University of Singapore Singapore . event (i.e. an activity of the process as determined by the model developer) carries with it the potential for affecting the state of the model and is not necessarily related to the Discrete

Ngày đăng: 28/06/2014, 10:20

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Akiyama M, Kawamoto T, Shimamura M, Yokoyama T, Kadobayashi Y, Yamaguchi S Khác
[2] Bailey M, Cooke E, Jahanian F, Xu Y, Karir M (2009) A Survey of Botnet Technology and Defenses, Cybersecurity Applications Technology Conference for Homeland Security Khác
[3] Binkley JR, Singh S (2006) An algorithm for anomaly-based botnet detection”, Proceedings of the 2nd conference on Steps to Reducing Unwanted Traffic on the Internet, Vol.2 Khác
[4] Chen S, Tang Y (2004) Slowing Down Internet Worms, Proceedings of the 24th International Conference on Distributed Computing Systems Khác
[5] Dagon D, Zou C, Lee W (2006) Modeling botnet propagation using time zones, Proc. 13th Annual Network and Distributed System Security Symposium. San Diego, CA Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN