Bang số liệu profile vận tốc ở trụ cau hai trường hợp 37Bang 3.4 Bảng số liệu biểu diễn thay đổi mực nước và đáy ở hai trường hop 39Bảng 3.5 Xác định hệ số kị và phương thức vận chuyển b
Trang 1Đại Học Quốc Gia Tp Hồ Chí MinhTRƯỜNG ĐẠI HỌC BÁCH KHOA
NGUYEN HỮU HIẾU
CHUYEN NGÀNH: XÂY DỰNG CÔNG TRÌNH THỦY
LUẬN VĂN THẠC SĨ
TP HO CHÍ MINH, tháng
Trang 2CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠITRƯỜNG ĐẠI HỌC BÁCH KHOAĐẠI HỌC QUỐC GIA TP HỎ CHÍ MINH
Cán bộ hướng dẫn khoa học: PGS TS HUYNH THANH SƠN se cs¿
(Ghi rõ họ, tên, học hàm, học vi và chữ ký)
(Ghi rõ họ, tên, học hàm, học vi và chữ ký)
(Ghi rõ họ, tên, học hàm, hoc vi va chữ ky)
Luận văn thạc sĩ được bảo vệ tại Trường Đại học Bách khoa, DHQG Tp HCMngày tháng năm
Thành phần Hội đồng đánh giá luận văn thạc sĩ gồm:
(Ghi rõ họ, tên, học hàm, học vi của Hội đông châm bảo vệ luận văn thạc sĩ)
Xác nhận của Chủ tịch Hội đồng đánh giá LV và Bộ môn quản lý chuyên ngànhsau khi luận văn đã được sửa chữa (nêu có)
Chủ tịch Hội đồng đánh giá LV Bộ môn quản lý chuyên ngành
Trang 3TRƯỜNG ĐẠI HỌC BÁCH KHOA CONG HOA XÃ HOI CHỦ NGHĨA VIỆT NAM
KHOA KỸ THUẬT TÀI NGUYÊN NƯỚC Độc lập — Tự do — Hạnh phúc
Tp HCM ngày thang nam 2014
NHIEM VU LUAN VAN THAC SI
Họ và tên học viên: Nguyễn Hữu Hiểu Phái: NamNgày tháng năm sinh: 20-07-1988 Nơi sinh: Lâm Đồng
Chuyên ngành: Xây dựng công trình thủy MSHV: 11204497
I- TÊN DE TÀI: NGHIÊN CỨU UNG DUNG MÔ HÌNH TOÁN SO 3DSSHM VÀO MÔ PHỎNG DÒNG CHẢY VÀ HÓ XÓI XUNG QUANHTRỤ CÂU
I- NHIỆM VU VÀ NỘI DUNG:
II- NGÀY GIAO NHIỆM VỤ: TS n2 TH tr HE HH HH nênIV- NGÀY HOÀN THÀNH NHIỆM VỤU: - S2 n1 2E SE 3 SEV- CÁN BỘ HƯỚNG DÂN: PGS.TS HUỲNH THANH SƠN
CÁN BỘ HƯỚNG DÂN CHỦ NHIỆM BỘ MÔN ĐÀO TẠO
(Họ tên và chữ ký) (Họ tên và chữ ký)
TRƯỞNG KHOA
(Họ tên và chữ ký)
Trang 4LỜI CẢM ƠN
Để hoàn thành chương trình Cao học và thực hiện luận văn này, tôi được sựhướng dẫn, giúp đỡ và góp ý nhiệt tình từ quý thầy cô trường Đại học Bách Khoa TPHCM Bên cạnh do, tôi còn có được sự hỗ trợ từ anh em đồng nghiệp và động viên từ
những người thân, gia đình.
Trước hết, tôi xin chân thành cảm ơn đến quý thay cô trường Dai học Bách KhoaTPHCM, đặc biệt là những thầy cô đã tận tình dạy bảo và giúp đỡ tôi trong suốt thời
gian học tập tại trường.
Tôi xin gửi lời cảm ơn với lòng biết ơn sâu sắc đến Phó Giáo sư - Tiến sĩ HuỳnhThanh Son đã dành rất nhiều thời gian va tâm huyết dé hướng dẫn nghiên cứu và giúp
tôi hoàn thành luận văn nàyQua day, tôi cũng xin chân thành cảm ơn Ban Giám hiệu, Phong dao tạo sau
Đại học trường Đại học Bách Khoa TP HCM đã tạo điều kiện thuận lợi cho tôi hoànthành tốt khóa học
Đồng thời, tôi cũng xin cảm ơn ban lãnh đạo Khu quản lý giao thông đô thị số 2đã giúp đỡ tôi về mặt số liệu để phục vụ cho công tác luận văn
Cuối cùng, tôi xin cảm ơn những người trong gia đình và bạn bè đã động viêngiúp đỡ tôi rất nhiều trong thời gian qua
Mặc dù tôi đã có nhiều cố găng hoàn thiện luận văn nhưng chắc chắn khôngtránh khỏi những thiếu sót, rất mong nhận được những đóng góp quý báu từ quý thầycô và các bạn, dé tôi khắc phục và nâng cao kiến thức
Xin chân thành cảm ơn.
Tp.Hồ Chí Minh, ngày tháng năm 2014
Học viên
Nguyễn Hữu Hiếu
Trang 5TÓM TẮT LUẬN VĂNMục tiêu của luận văn là nghiên cứu ứng dụng mô hình 3D SSIIM do
N.R.Olsen xây dựng vảo tính toán mô phỏng dòng chảy và hỗ xói quanh trụ cầu
Sài Gòn 2.
Luận văn gồm 4 chương :- Chương 1: Tổng quan, bao gồm đặt van dé, tình hình nghiên cứu
trong và ngoài nước cũng như mục tiêu, nội dung và phương pháp nghiên cứu.
- Chương 2 : Cơ sở lý thuyết mô hình SSIIM 3D và giải thuật, baogôm các phương trình tính toán và phương pháp toán số trong mô hình
- Chương 3 : Thử nghiệm mô hình SSIIM 3D với các bài toán cơ bản,
bao gồm trình bay một số thử nghiệm đơn giản đối với mô hình, đối chiếu kếtquả với kết quả thí nghiệm và kết quả tính toán theo lý thuyết, chạy thử nghiệmvới mô hình hai trụ cầu
- Chương 4: Áp dụng mô hình SSIIM 3D vào bài toán thực tế, baogồm trình bay dữ liệu liên quan đến đoạn sông Sài Gòn và cầu Sài Gòn 2, vàcác kết quả mô phỏng dòng chảy, bồi xói trong sông và xung quanh 2 trụ chínhcủa cầu Sài Gòn 2 trong thời gian là 1 năm
Trang 6The objective of the thesis is to study and apply the 3D SSIIM modelproposed by N.R Olsen to calculate the flow and scour holes around Sai Gon 2bridge piers.
The thesis consists of four chapters:- Chapter 1 : Overview, including introduction, domestic and foreignresearches as well as objectives, contents and methodologies.
- Chapter 2 : Basic of the SSIIM model, including the system of equationsand the numerical method used in the model.
-Chapter3 : Some simple model tests, including comparison withexperimental and theoretical results.
- Chapter 4 : Data collection relative to the Saigon river and the Saigon 2bridge and results of flow and erosion simulation around two main piers of thisbridge.
Trang 7Chương 1 : TONG QUAN 111.1 Dat van dé II
1.2 Tình hình nghiên cứu trong và ngoài nước 121.2.1 Tình hình nghiên cứu ngoài nước 121.2.2 Tình hình nghiên cứu trong nước 131.3 Mục tiêu luận văn 151.4 Nội dung luận văn 151.5 Phương pháp nghiên cứu 15
Chương 2 : CO SỞ LÝ THUYET MO HINH 3D SSIIM VÀ GIẢI THUẬT 1ó2.1 Cơ sở lý thuyết l62.1.1 Lịch sử phát triển 16
2.1.2 Module tính toán dòng chảy 16
2.1.3 Tinh toán chuyền tải bùn cát 202.1.4 Phương trình diễn biến đáy Exner 212.2 Phuong pháp số trong mô hình 222.2.1 Tổng quan về các phương pháp số 22
2.2.2 Phương pháp giải hệ PT Navier-Stokes trong mô hình SSHM 22
2.2.3 Phương pháp giải PT chuyền tải bùn cát trong mô hình SSIIM 25Chương 3 : THU NGHIEM MÔ HINH 3D SSIIM VỚI CÁC BÀI TOÁN CƠ BẢN3.1 Bai toán dòng ồn định trong kênh phang 293.2 Bài toán xói quanh một trụ cầu hình tròn 33
3.2.1 Mô tả thí nghiệm - dữ liệu tính toán cho mô hình 33
3.2.2 Kết quả mô hình 34
f x4 Ì
Trang 83.2.3 Tính toán bằng công thức thực nghiệm 413.2.3.1 Cơ sở lý thuyết 413.2.3.2 Kết quả tính toán bằng thực nghiệm 463.2.4 So sánh kết quả - Nhận xét 463.3 Mô phỏng tác động của dòng chảy vào hồ xói khi có hai trụ cầu với khoảng
cách khác nhau 48
Chương 4 : ÁP DUNG MÔ HINH 3D SSIIM VÀO BÀI TOÁN THUC TE 55
4.1 Giới thiệu khu vực nghiên cứu 55
4.1.1 Tổng quan về Sông Sai Gòn khu vực nghiên cứu 554.1.2 Công trình cầu Sài Gòn 2 564.2 Dữ liệu cần thiết cho tinh toán đầu vào 57
4.2.1 Dia hinh 57
4.2.2 Dia chat đáy sông 59
4.2.3 Thủy văn - Thủy lực 63
4.2.4 Thông số kỹ thuật sơ lược cầu Sai Gòn 2 64
4.3.2.2 Mô phỏng dòng chảy và chuyền tải bùn cát cho đoạn sông khi cócông trình cầu (d = 0.5mm) 764.3.3 Tính toán mặt cắt chỉ tiết trụ cầu 83
í s }
Trang 94.4 Nhận xét và đánh giá kết quảKẾT LUẬN VÀ KIÊN NGHỊ
Tài liệu tham khảoPhụ lục
Phụ lục 1: Kết quả tính toán vận tốc trong kênh HCN
Phu lục 2 : Trình tự nhập dữ liệu cho file Timei trong mô hình
959698
101104
Trang 10Hình 3.4 Hình mô tả hình thành hồ xói trong thí nghiệm thủy lựcHình 3.5 Dữ liệu tính toán đầu vào mô phỏng trong mô hình 3D SSIIMHình 3.6 Sơ đồ ô lưới trong mô hình
Hình 3.7 Số dư hội tụ khi hoàn tất chương trìnhHình 3.8a Trường vận tốc trong SSIIM (trường hop 1)Hình 3.8b Trường vận tốc trong SSIIM (trường hợp 2)Hình 3.9a Biểu diễn profile vận tốc trước va sau trụ cầu (Trường hop 1)Hình 3.9b Biểu diễn profile vận tốc trước và sau trụ cầu (Trường hợp 2)
30303032333435353636373838
Hình 3.10a Biểu diễn mực nước và hồ xói trước và sau trụ câu (Trường hợp 1)40Hình 3.10b Biểu diễn mực nước và hồ xói trước và sau trụ câu (Trường hợp 2)40Hình 3.11 Đồ thị xác định độ thô thủy lực
Hình 3.12 Thể hiện cách tính toán hệ số hiệu chỉnh K,Hình 3.13 Biểu diễn hình dạng mũi trụ cầu
Hình 3.14 Dữ liệu tính toán đầu vào trong mô hình SSIIM 3DHình 3.15 Trường vận tốc giữa 2 trụ (khoảng cách 6 m)Hình 3.16 Trường vận tốc giữa 2 trụ (khoảng cách 16 m)Hình 3.17 Trường vận tốc giữa 2 trụ (khoảng cách 36 m)Hình 3.18 Biểu diễn biến đổi đáy (trường hợp 1)
4243444949495052
Trang 11Hình 3.19 Biểu diễn biến đổi đáy (trường hợp 2) 52Hình 3.20 Biểu diễn biến đổi đáy (trường hợp 3) 53
Hình 4.1 Hinh chụp từ Google map khu vực nghiên cứu 56
Hình 4.2 Hình ảnh cau Sài Gòn 2 (hướng nhìn từ Quận 2) 57Hình 4.3 Mô phỏng 2D địa hình lòng sông Sai Gòn khu vực nghiên cứu bang
phân mém BlueKenue 58
Hình 4.4 Hình bang kết quả do đạc ham lượng phù sa 62Hình 4.5a Biểu đồ quá trình mực nước H1% tai trạm câu Sài Gòn 2 63Hình 4.5b Biểu đồ quá trình lưu lượng Q1% (H1%) tại trạm cầu Sài Gòn2 64Hình 4.6 Hình 2 trụ chính của cau Sài Gòn 2 65Hình 4.7a Lưới tính toán tong thể khu vực nghiên cứu 66Hình 4.7b Lưới tính toán chỉ tiết khu vực hai trụ cầu 67Hình 4.8 Chu thích các khai báo trong chương trình đối với mặt cat tong thé 69Hình 4.9 Thể hiện số dư tính toán với trường hợp 1 70Hình 4.10 Trường vận tốc khi thủy triều xuống ở lưu lượng ra cực đại 7]Hình 4.11 Trường vận tốc khi thủy triều lên ở lưu lượng vào cực đại 72Hình 4.12a Biểu diễn mức thay đổi lớp đáy sau 6 tháng (trường hợp 1) 73Hình 4.12b Biểu diễn mức thay đôi lớp đáy sau 12 tháng (trường hợp 1) 74Hình 4.13 Số dư tính toán cho trường hợp 2 75Hình 4.14 Trường vận tốc khi thủy triều xuống ở lưu lượng ra cực đại 76Hình 4.15 Trường vận tốc khi thủy triều lên ở lưu lượng vào cực đại 77Hinh 4.16a Truong van tốc ở một số mặt cắt ngang khu vực hai trụ cau khi thủytriều xuống 78Hình 4.16b Truong vận tốc ở một số mặt cắt ngang khu vực hai trụ cau khi thủytriều lên 79
Trang 12Hình 4.17a Biểu diễn mức thay đổi lớp đáy sau 6 tháng (trường hợp 2) 80Hình 4.17b Biểu diễn mức thay đôi lớp đáy sau 12 tháng (trường hợp 2) 81Hình 4.18 Dữ liệu tinh toán dau vào cho trường hop mặt cắt chỉ tiết 83Hình 4.19 Số dư tính toán với trường hop 3 84Hình 4.20a Trường vận tốc khi thủy triều xuống (mặt cắt chỉ tiết) 86Hình 4.20b Trường vận tốc khi thủy triều lên (mặt cắt chi tiết ) 85Hình 4.21a Biểu diễn thay đối cao độ lớp đáy, hố xói quanh trụ cầu (6 tháng ) 86Hình 4.21b Biểu diễn thay đồi cao độ lớp đáy, hỗ xói quanh trụ cầu (12 tháng ) 87Hình 4.22a Hình biểu diễn đáy trước và sau khi xói ở sau trụ 1 89Hình 4.22b Hình biểu diễn đáy trước và sau khi xói ở trụ 2 90Hình 4.23 Hình biểu diễn độ sâu hồ xói lớn nhất qua các tháng tính toán 91Hình 4.24 Hình biểu diễn biến đổi đáy trước va sau khi tính toán 94
f 9 }
Trang 13Danh sách Bảng
Bảng 3.1 Vị trí cao độ theo phương đứng biểu diễn trong mô hình 29Bang 3.2 Bảng so sánh kết quả tính toán trong SSIIM và giải tích 31Bang 3.3 Bang số liệu profile vận tốc ở trụ cau hai trường hợp 37Bang 3.4 Bảng số liệu biểu diễn thay đổi mực nước và đáy ở hai trường hop 39Bảng 3.5 Xác định hệ số kị và phương thức vận chuyển bùn cát 42Bảng 3.6 Thể hiện hệ số hiệu chỉnh K; theo tình trang đáy sông 45Bảng 3.7 Kết quả tính toán bằng công thức thực nghiệm 46Bảng 3.8 Bảng so sánh kết quả thí nghiệm thủy lực, mô hình SSHM và công thức
thực nghiệm 47
Bảng 3.9 Bảng số liệu biến doi đáy kênh ở các trường hợp 50Bảng 3.10 Bảng kết quả tính toán của ba trường hợp trong mô hình 54Bảng 4.1 Bảng kết quả tính toán vận tốc không xói cho phép của các mẫu bùn
cát (đo đặc ở Thanh Da) theo công thức ASCE TASK COMMTTEE (1967) va
MEHROTA (1983) (Viện khoa học Thủy lợi Miễn Nam) 60
Bang 4.2 Bảng tính đường kính và độ thô thủy lực hạt bùn cát 61Bang 4.3 Bảng sô liệu thê hiện biên đôi đáy trước và sau khi tính toán ở trước va
sau hai trụ cầu 88Bang 4.4 Bang số liệu chiều sâu hỗ xói tính toán lớn nhất theo thoi gian — 90Bảng 4.5 Bảng kết quả chiều sâu đáy trước và sau tinh xói 92
f 40 Ì
Trang 14Chương 1 : TONG QUAN
1.1 ĐẶT VẤN DEViệt Nam là đất nước có mật độ sông ngòi khá cao Với tốc độ phát triểnkinh tế-xã hội ngày càng lớn, việc đầu tư phát triển cơ sở hạ tầng về giao thôngngày càng được chú trọng, đặc biệt các công trình cầu xây dựng qua sông Cáccông trình này thường gây ra sự thu hẹp dòng chảy do sự hiện diện của các trụ cầu,làm chiều rộng dòng chảy trong sông giảm đi, dẫn đến vận tốc dòng chảy dưới cầutăng lên Khi vận tốc dòng chảy tăng lên có thể gây xói lở trên đáy sông, hai bênbờ và xung quanh các trụ cầu Dòng chảy càng bị thu hẹp, khả năng xói lở phátsinh càng lớn Xói lở đe dọa nghiêm trọng trụ cầu, m6 cầu và gây mất an toàn,nguy hiểm cho công trình Vì thế, xói lở xung quanh trụ cầu là một tiêu chuẩnquan trọng cần được tính toán kiểm tra khi thiết kế cầu vượt sông Đây là dé taiđược nhiều nhà khoa học quan tâm nghiên cứu từ lâu
Về mặt mô hình toán số, từ những phương trình đầu tiên của Navier-Stokesdiễn tả dòng chảy tổng quát đến hệ phương trình Reynolds cho từng trường hợpchảy rối cùng với các phương trình mô tả chuyển tải bùn cát đáy, bùn cát lo lửng,biến hình đáy sông , các nhà khoa học ngày càng muốn định lượng hóa một cáchchính xác hơn những vấn đề nêu trên
Bên cạnh những phương pháp nghiên cứu truyền thong như bang mô hình
vật lý, bằng thực nghiệm, đo đạc thực (Ế cùng với sự phát triển của nhanh
chóng của công nghệ tin học, phương pháp mô hình toán số ngày càng đượcnghiên cứu và ứng dụng rộng rãi Nhiều mô hình toán số 1D, 2D và 3D đã đượcxây dựng, thử nghiệm và áp dụng để giải quyết các bài toán thực tế Có thể nêu ramột số mô hình toán số như MIKE 11(1997), MIKE 21 và MIKE 21C (2003) của
viện Thủy lực Đan Mạch, HEC-RAS (1995), RMA2 (1997) của US Army Corps
of Engineering, TELEMAC, SSIIM M6i mô hình đều có những thế mạnh, phạm
vi ứng dụng và điêu kiện sử dụng riêng, tạo nên sự phong phú đa dạng của mô
Trang 15trường mô hình toán sô, đáp ứng yêu câu của từng lĩnh vực nghiên cứu cụ thê
trong thực tế.1.2 TINH HÌNH NGHIÊN CỨU TRONG VÀ NGOÀI NƯỚC
1.2.1 Nghiên cứu ngoài nướcCác mô hình toán sô 1D, 2D và 3D đã được nghiên cứu và ứng dụng rât
nhiều ở nước ngoai Có thé kế đến như :
- Bai bao “Estimating Scour Depth Around Bridge Piles Using Ssiim Softwareand comparing its Results with Physical Model results” Ebrahim Jafari, H.Hassunizadeh, Ehsan Zazedehdasht, Maryam Kiuan Islamic AzadUniversity Shoushtar Campus (2011) - Australian Journal of Basic and Applied
Sciences Cac tác gia, su dung mô hình 3D SSHM dé tính toán chiều sâu của hồxói quanh cầu, kết hợp với các mô hình vật lý để so sánh kết quả đạt được [2]
- Bai bao “Control and decrease the scouring of bridge pier by method of submerged plates using SSHM software” Kouros Nekoufar and Hafez Kouhpari(2013) — Research Journal of Fisheries and Hydrobiology Tac gia sử dụng mô
non-hình SSIIM để tinh toán sự tác động của các khối chan dòng lên dòng chảy, sosánh với kết quả thí nghiệm [3]
- Bai báo “Two dimensional depth-averaged model simulation ofsuspended sediment concentration distribution in a groyne field” J G Duan,
S.K Nanda Các tác giả đã sử dung các mô hình toán số trung bình theo chiềusâu như CCHE 2D, Delft-Rivers, MIKE 21C và TAB-AMR để mô phỏng thủylực sông Kankakee Kết quả tính toán thu được phù hợp với kết quả thực đo
- Báo cáo “2D Shallow-Water Model Using Unstructured Finite Methods” D.K Nguyen, S Y Wang va T H Nguyen Mô hình toán giải hệ phương trình
Saint-Venant theo phương pháp phan tử hữu hạn dựa trên một lưới phi cau trúc.Kết quả đạt được phù hợp với kết quả đo trong phòng thí nghiệm Bài nghiên cứucũng đưa ra mô hình tách nước từ sông Hồng vào vùng trữ nhằm giảm thiểu anh
hưởng lũ cho Hà Nội.
Trang 16- Bài báo “3D Numerical Simulation of Scouring Around Bridge Piers (CaseStudy : Bridge 524 crosses the Tanana River)” cua tac gia T.Esmaeili,A.Dehghani, A.R Zahiri va K.suzuki Cac tac giả đã sử dung mô hình 3D SSHM
dé đánh giá tác động của dòng chảy va hỗ xói cục bộ quanh trụ cau [13].- Luận án Tiến sĩ “3D numerical investigation on settling basin layout”
Bishwo Vijaya Shrestha (2012) - Mprwegian University of Science andTechnology [16].
- Luận án Tiến si “Three-dimensional numerical modeling of sediments in
water reservoirs” Lisa Emilie Hoven (2010) , The Norwegian University ofScience and Technology [15].
V.V
1.2.2 Nghiên cứu trong nước
Nhiều mô hình toán số được các nhà khoa học nghiên cứu và ứng dụng
trong nước, như :
- Bài báo “Mô hình 3D tính toán dòng chảy vùng cửa sông và ven biển” của
tác giả Huynh Thanh Sơn (1997) Tac gia đã dùng phương pháp sai phan hữu hạn
để giải mô hình 3 thứ nguyên về dòng chảy, đô mặn và nhiệt độ từ trong sông ratới ngoài biển Mô hình cung cấp được các thông tin chỉ tiết về cau trúc dòng
chảy theo phương đứng so với mô hình 2 thứ nguyên tại vùng cửa sông và ven
biển Điểm đặc biệt của nghiên cứu nay là sự ghép nối giữa dòng chảy trong sôngvà dòng chảy trong biển thông qua một hệ phương trình duy nhất với việc sửdụng phép biến đổi tọa độ sigma theo phương đứng Những thí nghiệm số banđầu cho thấy mô hình có thể áp dụng vào thực tế
- Bài báo “Mô hình tính biến hình lòng dẫn 3D” của tác giả Lê Song Giang và
Lê Mạnh Hùng (2007) Mô hình tính toán dòng chảy và vận tải bùn cát trong
sông Dòng chảy được tính bằng cách giải phương trình Reynolds với giả thiết
thủy tinh Bun cát lơ lửng được mô phỏng bởi phương trình van tai, còn bun cat
đáy được tính toán bằng các công thức thực nghiệm Biến hình lòng dẫn được
Trang 17tính toán từ phương trình bảo toàn khối lượng tong Tat cả phương trình đều đượcgiải bằng phương pháp thể tích hữu hạn Mô hình nghiên cứu này nghiên cứuđược quá trình biến hình lòng dẫn trong sông và áp dụng tính toán biến hình sôngVàm Nao Điểm đặc biệt của mô hình là có thể đáp ứng được quá trình mô phỏngbiến động lòng dẫn do thủy triều và lũ Kết quả tính trường vận tốc và diễn biến
đáy lòng sông có độ chính xác khá cao.
- ĐỀ tài “Nghiên cứu sự xói lở cục bộ quanh trụ cầu” của Nguyễn TrườngHuy (2010) [7] Đề tài nghiên cứu ảnh hưởng của các tham số đặc trưng đếnchiêu sâu hồ xói quanh trụ cầu, kết hợp với mô hình dòng chảy trung bình haichiều ngang River2D (được thiết lập theo phương pháp phan tử hữu hạn dé tinhtoán vận tốc dòng chảy 2 chiều ngang) để xác định trường vận tốc của dòng chảyquanh trụ cầu, từ đó có những phương án khắc phục và xử lý xói cho công trìnhthực tế là cầu Rông-thành phố Da Nẵng
- Bài báo “Nghiên cứu khả năng xói lở cục bộ tai công trình cầu Trần Thị Lýkhi xây dựng mới” của tác giả Lương Nguyễn Hoàng Phương và Nguyễn ThếHùng (2011) [18] Trong bài biết nay, các tác giả tính toán xói tại công trình cầuTrần Thị Ly với sử dụng trường vận tốc nhận được ở chương trình tínhRIVER 2D, xây dựng từ mô hình tính toán dòng chảy hai chiều ngang và giảitheo phương pháp phan tử hữu hạn
- Bài báo “Áp dụng chương trình RMA2 để tính xói tại cầu sông Hàn” của tácgiả Đặng Việt Dũng và Nguyễn Thế Hùng (2010) [19] Trong bài báo này, các tácgiả tính toán xói cục bộ tại cầu sông Hàn nhờ sử dụng trường vận tốc nhận đượctừ chương trình tính RMA2, xây dung từ mô hình tính toán dòng chảy hai chiềungang và giải theo phương pháp phần thử hữu hạn
- Báo cáo luận văn Thạc sĩ “Nghiên cứu ứng dụng mô hình 3D vào tính toán
dòng chảy và chuyển tải bùn cát sông” của Trần Hiếu Thuận (2011), Đại họcBách Khoa Tp.Hồ Chi Minh [9]
- Bao cáo luận văn Thạc sĩ “Nghiên cứu ứng dụng mô hình 3D SSIIM vào
tính toán dòng chảy trong sông và hỗ chứa” của Doan Hùng Hưng (2010), Dai
Trang 18học Bách Khoa Tp.Hồ Chí Minh [8].
V.V
1.3 MỤC TIỂU CUA LUẬN VĂNNghiên cứu ứng dụng mô hình toán số 3D SSIIM vào mô phỏng dòng chảy
và hồ xói xung quanh trụ câu Sai Gòn 2 (mới), đôi chiều so sánh ket quả tìm được
với các kết quả tính toán xói theo lý thuyết.1.4 NỘI DỤNG CUA LUẬN VĂN
- Nghiên cứu co sở lý thuyết mô hình SSIIM (hệ phương trình tính toándòng chảy và chuyến tải bùn cát, phương pháp toán sô)
- Thu nghiệm mô hình SSHM với một vai bài toán co ban và so sánh với
kết quả thực nghiệm.- Thu thập va phân tích số liệu đoạn sông Sài Gòn (địa hình, thủy van, dòngchảy) và công trình cầu của khu vực cần nghiên cứu
- Ứng dụng mô hình SSIIM dé tính toán, mô phỏng dòng chảy xung quanhtrụ cầu Sài Gòn
- Nhận xét, đánh giá ưu nhược điểm, khả năng ứng dụng của mô hình vàkiến nghị
1.5 PHƯƠNG PHÁP NGHIÊN CỨUPhương pháp chính dùng trong luận văn là phương pháp mô hình toán số, kếthợp với việc thu thập, phân tích di liệu và tính toán theo lý thuyết dé so sánh đối
chiêu kêt quả.
Trang 19CHƯƠNG 2 : CƠ SỞ LY THUYETMO HINH 3D SSIIM VÀ GIẢI THUẬT
2.1 CƠ SỞ LÝ THUYET2.1.1 Lịch sử phát triển
Mô hình toán số SSIIM (Sediment Simulation In Intakes withMultiblock option) được phát triển vào những năm 90 của thé kỷ trước, tiềnthân là phần mềm SSII (Sediment Simulate IN Intakes) được xây dựng dựa trênphần mềm tính thủy động lực học (CFD) SPIDER viết bởi giáo sư M Melaaen(Bộ môn thủy lực — Viện kỹ thuật Na Uy) Sau nhiều năm nghiên cứu cải tiến,giáo sư Nils Reidar Boe Olsen đã nâng cấp SSII lên thành hai phiên bản SSIIM1 và SSIIM 2 dé tang khả năng tính toán dòng chảy tại những địa hình phức tap:
- SSIIM 1: Tính toán mô phỏng dòng chảy với dạng ô lưới định sẵn
- SSIIM 2: Tính toán mô phỏng dòng chảy với khả năng hiệu chỉnhđược ô lưới tính toán.
Mô hình SSIIM gồm 5 module:
- Module tính toán dòng chảy
- Module tính toán chuyền tải bùn cát- Module tính toán chất lượng nước
- Module tính toán nhiệt độ
- Module tính toán sự phát triển của tao (algae)Trong luận van này, chỉ hai module tính toán dòng chảy và chuyền tai bùncát được tìm hiéu chỉ tiết và ứng dụng vào thực tế
2.1.2 Module tính toán dòng chảya Hệ phương trình Navier-Stokes
Hệ phương trình Navier-Stokes cho dong chảy rối, chat lưu không nén
được có khôi lượng riêng là hăng sô được việt dưới dạng rút gọn như sau:
Trang 20SE, ay ôU, 1 “( mmOt Ox, fe) oF (2.1)
k la động năng roi, k = 5 Mil j
Phuong trình Navier - Stokes được rời rac hóa theo phương pháp thétích kiểm soát và lời giải ân SIMPLE để tính toán, hiệu chỉnh giá trị áp lực
b Mô hình rồi k-e
Mô hình rôi k-e được sử dụng đê tính toán hệ sô nhớt rôi :
¬Up — 0, >
3 (2.3)
Phương trình tính động năng tối k :
trong đó sỐ hạng P¿ diễn tả sự sản sinh rỗi, được tính như sau :
Trang 21trong sông thì nhận xét trên không phải lúc nào cũng đúng, vì sự ma sát trên đáy
sông có ảnh hưởng đến dòng chảy trên độ nhám đáy cần phải được xác định Nếuđộ nhám đáy không thể được đo đạc trực tiếp thì nó phải được hiệu chỉnh với cácvận tốc đo được
Mô hình rối k- là mô hình được mặc định trong SSIIM.c Anh hưởng của sự thay doi khối lượng riêng
Ảnh hưởng của sự thay đổi khối lượng riêng trong dòng chảy được ké đếnnhờ hiệu chỉnh hệ số nhớt rồi Hệ số nhớt rối ro từ mô hình k-e được nhân vớimột hệ số có xét thêm các gradient vận tốc và nồng độ ( Rodi, 1980) :
a ÌÌ&
d Quy luật tưởng biên (Wall laws)
Gradient vận tốc ở sát thành biên thường rất dốc (vận tốc thay đối lớn), nếudùng phương pháp phân chia 6 lưới dé giải đòi hỏi phải dùng quá nhiều ô lưới, dẫn
Trang 22đến thời gian tính toán rất tăng lên Do đó để giải quyết vẫn đề này, tác giả sửdụng giả thiết rang vận tốc thay doi theo một hàm kinh nghiệm được gọi là “Quy
^x~¬?”?
luật tường biên” (Wall laws) Các phương trình cần giải, bao gồm hệ phương trìnhNavier-Stokes và các phương trình rỗi, một số số hạng được rời rạc hóa trongmiễn tính toán chính Đây cũng là mô hình mặc định trong SSITM Quy luật thànhbiên là biểu thức kinh nghiệm thành nhám (Schlichting, 1979) :
trong đó : u, là vận tốc ma sát
là hằng số Karman = 0.4y là khoảng cách thăng đứng đến thành
k, là độ nhám tương đương cua Nikuradse.
e Anh hưởng của nông độ bùn cát trong dòng chảyẢnh hưởng của nông độ bùn cát trong dòng chảy có thé được chia làm 2
quá trình vật lý như sau :
- Qua trình 1: bùn cát gần đáy di chuyển bang cách “nhảy” vào dòng chảyrồi chìm xuống Điều này làm cho vận tốc của lớp nước sát đáy giảm vì phảicung cấp năng lượng dé di chuyển bùn cát, hoạt động này được xem như là tácđộng của của lớp biên nhám phụ Băng các mô hình thí nghiệm, Einstein vàNing Chen (1955) đã dé nghị công thức hiệu chỉnh phân bó vận tốc theo nồngđộ bùn cát c hay hăng số k trong qui luật tường biên sẽ được hiệu chỉnh theobiéu thức :
_ | —_(1+2.5c)
Oz (2.10)
Trang 23Trong mô hình SSIIM, SỐ hạng này không được tính mặc định, chỉ khi nàocó yêu câu băng câu lệnh F18 trong file Control.
Quá trình 1 và quá trình 2 làm cho profile vận tốc di chuyển theo hướng đốinhau: quá trình 1 sẽ làm giảm vận tốc nước ở sát lớp đáy, trong khi đó quá trình 2
sẽ làm tăng vận tôc nước sát lớp đáy.
2.1.3 Tính toán chuyền tai bùn cát
Tính toán chuyền tải bùn cát gồm chuyền tải bùn cát đáy và chuyền tài bùn
cát lơ lửng.a Bun cat lơ lung
Bun cat lơ lửng có thé được tính toán với phương trình đối lưu - khuếchtán, đối với nông độ bùn cát c :
Ot Ox, Oz OX, Ox, (2.11)
trong đó : w là độ thô thủy lực của hat bùn cát.
T là hệ số khuếch tán nhận được từ mô hình roi k-e:
trong do: d là đường kính hat bùn cát.
a là cao độ quy chiếu, hay chiều cao nhámt là ứng suất tiếp trên đáy
T, là ứng suất phân giới trên day, xác định theo đồ thi Shields về sựchuyển động của bùn cát
p, và p, là khối lượng riêng của nước và bùn cátv là hệ số nhớt động lực học của nước
ø là gia tốc trọng trường
Trang 24Hệ số suy giảm K đối với ứng suất tiếp phân giới theo độ dốc đáy cho bởi
Brooks (1963) :
cK -_Singsina | can NT)
tang tan 8 tan 8
trong đó : ơ là góc giữa hướng dòng chảy và pháp tuyến với mặt đáy
(2.13)
0 là tham số độ dốco là góc độ dốcHệ số K được tính toán và nhân với ứng suất tiếp phân giới đối với một bềmặt nằm ngang để cho ứng suất tiếp phân giới hiệu dụng cho một hạt bùn cát
trong đó : d là chiều sâu nước
K, là độ nhám hiệu dụng xác định theo Van Rijn (1987) :
Như vậy, độ dày lớp vận chuyển bùn cát đáy được tính toán như một hàmphụ thuộc vào giá trị ứng suất đáy
2.1.4 Phương trình diễn biến đáy ExnerDay là phương trình chính dùng dé tính toán thay doi đáy kênh trong SSIIM,
dựa trên việc cân băng giữa bùn cát đáy và bùn cát bị mang đi, hay nói cách khác
Trang 25là sự nâng cao cao trình đáy kênh với ty lệ lượng bùn cát di chuyển tới, phương
trình được viết như sau :
Ot By (2.17)
ôn 1
trong đó : n là cao trình đáy kênh
t là thời gian
sọ là mật độ bùn cát ban dau hay eo = 1- Ap là độ rỗng bùn cát
qs là lưu lượng bùn cát đáy đơn vi
2.2 PHƯƠNG PHAP SỐ DUNG TRONG MÔ HÌNH SSIIM2.2.1 Tổng quan về các phương pháp số
Có ba phương pháp số thường được dung khi giải các phương trình đạo
hàm riêng:
- Phuong pháp thể tích hữu hạn ( Finite Volume Method — FVM)
- Phuong pháp sai phan hữu han (Finite Difference Method — FDM)
- Phuong pháp phân tử hữu han ( Finite Element Method — FEM)Mô hình 3D SSIIM sử dung phương pháp thé tích hữu hạn dé giải các hệPT Phương pháp này sử dụng các 6 (cell) và phan tử (element) năm hoản toàntrong miễn tính toán, ý tưởng của phương pháp là tính toán mực nước tại điểmgiữa mỗi ô, thông lượng (flux) và vận tốc được tính toán tại biên Thể tích cầnkiểm tra là thé tích của mỗi 6, cân bằng khối lượng và động lượng cũng như tính
toán cho tât cả các ô lưới.
2.2.2 Phương pháp giải hệ phương trình Navier-Stokes trong mồ hình SSIIM
Hệ PT Navier-Stokes trong mô hình 3D SSHM được giải theo phương pháp
thé tích hữu hạn với thuật toán SIMPLE (Semi - Implicit Method for Pressure —Linked Equation), tạm dịch là Phương pháp nửa Gn đối với các phương trình đượcliên kết với ap suất, do Patankar đề xuất năm 1980 Mục dich của thuật toán là tim
trường áp suât chưa biệt, với ý tưởng là ước tinh một giá tri áp suat và dùng sự mat
Trang 26cân băng của PT liên tục (continuity defect) để nhận được một PT hiệu chỉnh ápsuất Một khi giá tri áp suất hiệu chỉnh được thêm vào cho áp suất ban đầu thì PT
liên tục sẽ được thỏa mãn Phương pháp SIMPLE được thực hiện như sau :- Gia tri áp lực và van tôc
P=P* +P’ (2.18)
trong đó: P* giá trị áp lực ban đầu
P' giá trỊ áp lực hiệu chỉnhk = 1-3 ứng với các gia tri x,y,z- Đạo ham phương trình Navier-Stokes, ta được :
aU, = > awry + B, — 4 =~) (2.20)
trong đó: B là hang số, phan dư của số hang đối lưu, áp lực
A là diện tích bề mặt của phần tử tường biênE là hệ số của hệ thong góc tọa độ không vuông góc- Roi rac hóa phương trình Navier-Stokes dựa trên các biến hiệu chỉnh, tađược kết quả như sau :
aU, = > aw + B,, — 4 =) (2.21)
mb 0g- Lay phương trình (2.3) trừ cho phương trình (2.4), kết hợp với phương trình(2.2) và (2.4) ta được kết quả như sau :
Trang 27- Tu phương trình trên, gia tri vận tốc hiệu chỉnh sẽ tìm được khi áp lực hiệuchỉnh đã biết Dé dat được giá trị áp lực hiệu chỉnh, áp dụng phương trình liên tụccho một phan tử dé tìm giá trị cho vận tốc hiệu chỉnh :
Quá trình giải được thực hiện như sau :
1 Cho trước giá trị miễn áp lực, P*2 Giải phương trình (2.20), tìm vận tốc U*
3 Giải phương trình (2.25) tim giá tri áp lực hiệu chỉnh, P’4 Tinh P = P* + P’
5 Tính U’ từ phương trình (2.23)6 Tinh U=U*+Ư
7 Lap lại bước 2, với P* =P, tính cho đến khi hội tụ.Lời giải miền áp lực của phương pháp SIMPLE có thé bị mất 6n định, dođó giá tri áp lực hiệu chỉnh phải nhân với hệ số nhỏ hơn 1, trước khi cộng vào giátri áp lực P*, hệ sỐ này gọi là hệ sỐ nghỉ (relaxaction coefficient) và thường bằng0,2 Hệ số nghỉ này sẽ thay đổi theo từng trạng thái chảy để đạt được sự hội tụnhanh nhất
Trang 282.2.3 Phương pháp giải PT chuyển tai bùn cát trong mô hình SSIIM
Phương trình chuyền tải bùn cát cũng được giải bằng phương pháp thể tíchhữu hạn, với ý tưởng chính là biến đôi một PT đạo ham riêng thành một PT mới,trong đó nông độ trong một ô lưới có thé xem như là trung bình gia trọng của nồng
độ các ô lân cận.
Đối với bài toán 2D, ta sẽ dùng các ký hiệu cy, Cs, Ce, Cy, Và Cp để chỉ lầnlượt nông độ và các ký hiệu ap, as, ae, aw Và ap (VỚI ap = an + ag + ae + aw) déchỉ lần lượt hệ số gia trọng trong các ô trên, dưới, phải, trái và trung tâm như hình
sau :
Cs
Nông độ cp trong ô trung tâm được xác định theo biểu thức:
apCp = awCw +t aeCe T ancn + asCs (2.27)
Các hệ số gia trọng an as, ae và Aw thường được ký hiệu chung là anb.anb có thể được xác định theo So đồ thượng lưu cấp một (First-orderupstream scheme, FOU), So đồ qui luật số mũ (Power-law scheme, POW) haySo đồ thượng lưu cấp hai (Second-order upstream scheme, SOU), trong đóhai sơ đồ FOU va POW dé dang cho sự hội tu của lời giải nhưng cũng tao rasự khuếch tán số đáng kể, còn sơ đỗ SOU có thể giảm bớt sự khuếch tán số này.Nội dung tóm tắt của hai sơ đồ FOU và SOU được trình bày dưới đây với ghichú đầu tiên là nồng độ c trong mỗi 6 được gan ở tâm của ô
a Sơ đồ FOUSơ đồ này chỉ dùng thông tin của ô ở ngay phía trước (upstream) của ô
đang xét.
Trang 29Đối với sự liên tục của bùn cát trong dòng chảy 6n định đều, tongcác thông lượng nói trên phải bằng zero, nghĩa là:
Thay các biêu thức tương ứng ở trên vào và sắp xếp lại, nhận được:(UeAe + UsAs + GwAw/dx + GeAe/dx + GnAn/dy + GsAs/ dy)cp =(UwAw + GwAw/dx)cw + (GeAe/dx)ce + (UnAn + GnAn(dy)cn +
(GsAs/dy)cs (2.33)Nếu so sánh (2.33) với (2.27), ta sẽ tìm được các hệ số gia trọng:
aw = UwAw + GwAw/dx ae = GeAe/dx (2.34)an = UnAn + GnAn(dy (2.35)
({ o6 Ì
Trang 30as = GgAg/dy (2.36)ap = UeAe +t UsAs + GwAw/dx + GeAe/dx + GnAn/dy +GgAs/dy (2.37)
Ngoài ra, ta phải có sự liên tục đối với nước trong 6 p:
UwAw - UeAe + UnAn - UsAs =0 (2.38)hay là:
UeAe + UsAs = UwAw + UnAn (2.39)Nhờ biểu thức (2.39), ta sé dé dang nghiệm thay răng:
ap = aw + ae + an + as (2.40)b Sơ đồ SOU
Theo so đồ nay, ta phải dùng tới 8 6 xung quanh 6 p
Khi 2 cạnh của 6 bang nhau, sử dung phép tam giác đồng dạng ta tìm được:
(cŸ - cww)/(dx + 0,5dx) = (cweww)/dx (2.41)
Từ đó:oW =3ew/2 - cww/2 (2.42)
Thông lượng qua mặt bên trái của ô p được viết dưới dạng:
Fw = UwAw(3ew/2 - cww/2) + GwAw(cw-cp)/dx (2.43)
Trang 31Tương tự, ta sẽ tìm được thông lượng qua các mặt còn lại của ô p:
(2.44)
Từ đó ta sẽ xác định được các hệ số gia trong:
a = lạ Aa/ dxay = 3/2 Uy Ay + 1/2 U, A, + Ty, Ay / dx
awy =" 1/2 Uy Ay
a, =I, A,/ dya, = 3/2 U, A, + 1/2 + Lạ An/ dya,, =-1/2U,A
= = (2.45)Trong sơ đỗ SOU, biểu thức (a) trở thành:
apCp = awCw T aeCe T anCn + ASCs tT awwCww Tâanncenn (2.46)
Trang 32Chương 3 : THỨ NGHIỆM MÔ HÌNH 3D SSIIM
VỚI MỘT SÓ BÀI TOÁN CƠ BẢN
3.1 BÀI TOÁN DONG ON ĐỊNH TRONG KENH PHANGTa tiến hành chạy mô hình cho kênh don giản có mặt cắt ngang hình chữnhật, kết hợp với các công thức giải tích vào so sánh với kết quả của mô hình
Kênh thử nghiệm có chiều dài 1000 m, rộng 100 m va sâu 10 m Trong mô
hình 3D SSIIM, kênh được rời rac hóa bởi lưới chia 3D với kích thước trên mặt
bằng là 10 m theo phương dòng chảy (x) với 101 mặt cắt, 2 m theo phương ngang(y) với 51 mặt cắt và 11 mặt cắt theo phương đứng (z) được chia min sát đáy sôngvà thưa dan đến sát vị trí mặt nước, theo ty lệ phần trăm lần lượt là :
Bảng 3.1 Vị trí cao độ theo phương đứng biểu diễn trong mô hình
VỊ trí %H | Khoảng cách tính từ đáy z(m)| 0 0
2 | 0,13 2 0,24 5 0,55 10 |6 15 1,57 20
8 409 6010 8011 100 10
Mô phỏng kênh phăng hình chữ nhật có độ dốc i = 0, với lưu lượng trongkênh Q = 800 (m”/⁄s), đường kính hạt d = 3mm, các thông số về chiều dài, chiềurộng, chiều sâu như trên Thực hiện tính toán, ta được kết quả trong bảng 3.2,trường vận tốc và profile vận tốc như hình sau
Trang 33gy"m puis.k1},""mirre ps,rire
II IIIIIHHHIHINHHHIIIIHIHINH|ARANETA TARA EAAIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIULLUI
RATTJIIIIIIILLIIIIIIIIIIIIIILIIIIIJIIILIIIII|AA TTARATT NTAAA AAIIIIIIIIIIIINIIIIIIIIIIIITIIIIIIIIIIIIIIITIMWJJ////1//////41////4/////70ƒ(/701/11011/0//0001/01111NORAPARRA RADAR R AAA A CARL AAA A LARA DARL ADL R AAAI]AAAHÑ(UNHÚNHHHHHHHHHHHHHUIHIIIIIIIIIIIIIIIIUIIIIIIIIIIIIUIIIIIIIIIIIIIWJ/(///(//////44//(//4////1/0 (100/11RENN NTETTIIIIIIINIIIIIIIHHHIHIHIW 000111014WJƒ//J177ƒf0ƒƒ1ƒƒ1ƒAAA AAMAA AANAAR RUA TAARA RARERW/4//0/1//4//4//14/47/1 0001011000110 01/1104
Hình 3.1c Profile vận tốc trong kênh
Trang 34Tính toán vận tốc phân bồ trong kênh theo lời giải tích: giả sử profile vận tốcphân bố dang logarithm với trạng thái chảy rối thành nhám thủy lực, Rex = u«k,/v
> 70 nên u(z) được tính toán như sau :
re KUVỚI u, =
Bảng 3.2 Bảng so sánh kết quả tính toán trong SSIIM và giải tíchz(m) | u(z) m/s (giải tích) | u(z) m/s (SSIM) | Sai số%
0 0.000 0.000 0.00.1 0.494 0.489 1.002 0.553 0.555 0.4
Trang 350.5 0.631 0.618 2.0\ 0.689 0.670 2.8L5 0.724 0.707 2.32 0.748 0.784 4.5Ạ 0.807 0.821 L76 0.842 0.841 0.1§ 0.866 0.848 2.110 0.885 0.849 4.1
12.000010.00008.0000
6.0000 ——Giai tích
~#=M
4.00002.00000.0000 Ml L
Trang 363.2 BÀI TOÁN XÓI QUANH MỘT TRỤ CÂU HÌNH TRÒNTa tiễn hành chạy mô hình cho thí nghiệm xói cục bộ quanh trụ cầu trong
phòng thí nghiệm thủy lực thuộc Khoa Xây dựng Thủy lợi-Thủy điện, trường Đạihoc Bách Khoa Da Năng [6].
3.2.1 Mô tả thí nghiệm - dữ liệu tính toán cho mo hình
Thí nghiệm thủy lực được thực hiện trên thiết bị S8 MKII (máng vận chuyền
bùn cát):
eS Me etSe ee C
Hình 3.3 Hình ảnh thiết bị thí nghiệm(1) Bê chứa nước sạch
(2) Máng nghiêng có kích thước ( dài x rộng x cao) 1550 x 80 x 180 mm(3) Cửa tràn có kích thước : rộng 60 mm, cao 50 mm
(4) Hệ thống điều khiển bằng tay(5) Máy bơm tuân hoàn với các cấp lưu lượng khác nhau(6) Bình thu nước và lắng cát
(7) Khung đỡ có chân điều chỉnh
Trang 37(8) Hệ thống trụ tròn có gắn vạch chia khoảng cách và được đặt giữa máng,
trường hợp trụ 20 mm.(9) Vật liệu đáy
(10) Thiết bị quan sátNước sạch được cung cấp từ bơm (5) đến (1) và chảy vào máng (2), đảm baodòng chảy trong máng là dòng chảy đều, hệ thống (8) được dat giữa máng Nướcchảy đến cuối kênh qua cửa (3) và chảy xuống bình (6), tại đây nước tiếp tục đượcbơm (5) đến (1), quá trình tiếp tục lặp lại cho đến khi kết thúc thí nghiệm
Đụn cát sau trụ Miệng hồ xói phía thượng lưu Cuộn xoáy móng ngựa dưới đáy
hố xói phía thượng lưu
a Phát triển của hồ xói giai đoạn 1 b Phát triển của hồ xói giai đoạn 2
c Phát triển của hồ xói giai đoạn 3 d Phát triển của hồ xói giai đoạn 4
Hình 3.4 Hình mô tả hình thành hồ xói trong thí nghiệm thủy lực3.2.2 Kết quả của mô hình
Mô phỏng trong mô hình SSIIM: chiều dài máng 1000 mm chứa trụ trònđường kính 20 mm (đặt giữa máng), chiều rộng 80 mm và chiều sâu 18 mm
Trang 38(trường hop 1) và 15 mm (trường hop 2) tương ứng với cấp lưu lượng 0,41 1⁄s và0,25 1⁄s Tất cả được rời rạc hóa bằng bằng lưới chia 3D có kích thước mỗi ô 5 x 2mm, với 201 mặt cat theo phương dọc dòng chảy (x), 41 mặt cắt theo phươngngang (y) và 4 mặt cắt theo phương đứng (z).
Bước thời gian : At = 5s.
Thời gian mô phỏng : T = 17h = 61200s (tương ứng với 12240 lần lặp)
T h1§E2
F 40.8 5 0.0001F7B
F 160.01F 3352F 362E371F42-§F431E 53 500 100 500 100F 540.01
F 56 2 0.84F592G1201 4141G 3 0.000000 33.333333 66.666667 100.000000G6 201 2150.50.1
G70124124000.00041 1.00.00.0G71-124124000.00041 1.00.0 0.0G 13 198 101 17 2624
S 1 0.00015 0.0154110
NOIIB0000000W 1 50.000000 0.00041 0.018000W231 100201
K 1 12240 60000K201K5111111K6000000
Vertical grid distributionInflow
Outflow
Giới han tru cầu
Kích thước hat và độ thô thuy lực
Loại hạt 1 và lượng bùn cát vào
Các loại nhóm trầm tích, kích thước hạt, kích thước nhóm
Phân bồ các nhóm trầm tích trên lướiStrickler, hru lượng và chiêu sâu
3 mặt cat chọn tinh toán Số lần lặp cho tinh toán dong chảy, số lần lặp tối thiêu cho môi lần update bê mặt nước
-Quy luật tường biên được sử dung
Hệ số phóng trong giao điện
Các phương trình tính toán dong chảy dc sử dung
Dữ liệu đầu vào dé mô phỏng quá trình chuyền tai bùn cát
trong mo hình
Level 4
Hình 3.6 So đồ 6 lưới chia trong SSIIM
Trang 39File View InputEdit Calculation Variable
Residual x-velocity: 3.688715e-014Residual y-velocity: 1.783998e-01 4Residual z-velocity: 1.109007e-014Residual continuity: 1.209773e-013Residual turb k: 6.311428e-014Residual epsilon: 1.833342e-013
Hình 3.7 — Số dư hội tu khi hoàn tất chương trình
File View InputEdit Calculation Variable Level Scale Move Print
` —_—= =- —~ ~ =- x-X->-7 xcx_-.ốó - TT - - TT TT - ỒÐS — TT TẢ TT ộẰỒ Ồ i i ee “ỶẼơừ Go ằẳằBnBE co = —— =>—> —> erm —> —> > —> —> —> — —> Oe => =_—_>` >> Crm Oc Oc —> —> —=—* —>~ _—>” —> —> —> —> or —> —>” —> — —> —> — —" —> —> Oc —> >
Sawai — dA aero peli odie a aoe
oS OOS SOO Oe eer SS ——— —> SS = a :
Trang 40File View InputEdit Calculation Variable Level Scale Move Print0.2m
Level 4
>> SSS 5 : ==—— :
a ial 3 Es 3
cg 2 : “>>> >>> > >>> >> >>> >>> >>- cS er ES “ea T777 a, š -
SMS NS œ-ãœx——————ŠỄ£—P—“——>~—>———~—
NaN xxx —»<—————=—————————————ằ————————m` >> ¬ “SS “ea “Se “Ss “8 “Ss ———————————=——_——=—=—-—>—-ẽ—>—>—>—~
mad ` ` ` ~_ > ¬~ ¬ — —> — — — — —~ —> —> —> —> —> —> —> —> —> —> —> —> —> —=» —> —> —> —*»~—a -— = eee — >> —~> ees eee ee er we or Oe a> se ss Os OO +
` CO ~ ~ ~ ~*~ -~* _~ _*> —* —t —* —> —> —=> —>
——>———-——x—x~—>-=—-—>-—->——-—-=>—>-7x ~-7 Y7 *- x~- TY TY >> _—”._”YT Oe —
# TY .- - Y Y7 Y 7 Y" nn a, ee <<
>_> \ PE PF EP TS SSS>> " a = = + — >_- >> >> ~ SS mm SH SH“ > Ss > ra
—> AE A EE a ee << ed — 5 SS SS
oth aS SS OSS ES SSS SS - = 5 > Se a
0.2101 mis_s_5 5-5 5, 5-5 > oa
Le - —-—_—-—— —>—— —>——> —>——>———>>>——> > >>> <6 = - > >>> >>> >>> >>