Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 63 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
63
Dung lượng
865,23 KB
Nội dung
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN TRẦN QUANG HUY NGHIÊN CỨUMỘTSỐKỸTHUẬTXÁCĐỊNHĐỘĐOTƯƠNGTỰ VÀ ỨNGDỤNGLUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG TIN Thái nguyên - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN TRẦN QUANG HUY NGHIÊN CỨUMỘTSỐKỸTHUẬT XÁC ĐỊNHĐỘĐOTƯƠNGTỰVÀỨNGDỤNG Chuyên ngành: Khoa học máy tính Mã số: 60.48.01 LUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG TIN Người hướng dẫn khoa học: TS. Phạm Việt Bình Thái nguyên – 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 5 LỜI CAM ĐOAN Tôi xin cam đoan toàn bộ nội dung trong Luận văn hoàn toàn theo đúng nội dung đề cương cũng như nội dung mà cán bộ hướng dẫn giao cho. Nội dungluận văn, các phần trích lục các tài liệu hoàn toàn chính xác. Nếu có sai sót tôi hoàn toàn chịu trách nhiệm. Tác giả luận văn Trần Quang Huy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6 MỤC LỤC Nội dung Trang ĐẶT VẤN ĐỀ 8 LỜI NÓI ĐẦU 9 Chƣơng 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀĐỘĐO TƢƠNG TỰ TRONG XỬ LÝ ẢNH 11 1.1. Khái quát về xử lý ảnh 11 1.1.1. Mộtsố khái niệm cơ bản 11 1.1.2. Mộtsố vấn đề trong xử lý ảnh 12 1.1.2.1. Các hệ thống xử lý ảnh 12 1.1.2.2. Các hình thái của ảnh 14 1.1.2.3. Mộtsốứngdụng trong xử lý ảnh 15 1.1.2.4. Mộtsố khái niệm, định nghĩa trong xử lý video 17 1.1.2.5. Lược đồ màu (Color Histogram) 22 1.1.2.6. Lược đồtương quan màu (Color Correlogram) 25 1.1.2.7. Đặc trưng chuyển động (Motion) 26 1.1.2.8. Các bước thao tác với file video 28 1.2. Độđo tƣơng tự trong xử lý ảnh 30 Chƣơng 2: MỘTSỐ PHƢƠNG PHÁP XÁCĐỊNHĐỘĐO TƢƠNG TỰ 32 2.1. Độđo dựa trên khoảng cách 32 2.1.1. Độđo khoảng cách min – max 32 2.1.2. Độđo khoảng cách Euclid 32 2.1.3. Độđo khoảng cách toàn phương: 32 2.2. Độđo sử dụng trọng số 32 2.2.1. Độđo có trọng số: 32 2.2.2. Độđo hỗn hợp 33 2.2.2.1. Thuộc tính rời rạc 33 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7 2.2.2.2. Thuộc tính có thứ tự 34 2.2.2.3. Thuộc tính liên tục 35 2.2.2.4. Kết hợp độđo của các thuộc tính 36 2.2.2.5. Thuật toán nhanh cho thuộc tính liên tục 38 2.2.2.6. Thuật toán nhanh cho thuộc tính có thứ tự 40 2.3. Độđo tƣơng tự có thể học (Trainable similarity measure) 41 2.4. Độđo dựa trên Histogram 43 2.4.1. Giới thiệu 43 2.4.2. Định nghĩa 43 2.4.3. Lược đồ mức xám hai chiều 44 2.4.4. Các tính chất của lược đồ mức xám 45 2.4.5. Quan hệ giữa lược đồ mức xám và ảnh 46 2.4.6. Một chiều 46 2.4.7. Hai chiều 47 CHƢƠNG 3: ỨNGDỤNGĐỘĐO TƢƠNG TỰ TRONG VIỆC PHÂN LOẠI ẢNH TRONG FILE VIDEO 49 3.1. Giới thiệu bài toán 49 3.2. Cài đặt thuật toán 49 3.2.1. Code đọc ảnh 49 3.2.2. Code đọc và extract frame file video 56 3.3. Kết quả thực nghiệm và đánh giá 59 PHẦN KẾT LUẬN 62 TÀI LIỆU THAM KHẢO 63 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 8 ĐẶT VẤN ĐỀ Lĩnh vực xử lý ảnh số tĩnh và xử lý ảnh động (video) đã được hình thành và phát triển vào những thập kỷ đầu của thế kỷ XX. Các phương pháp xử lý ảnh bắt nguồn từmộtsốứngdụng như nâng cao chất lượng thông tin hình ảnh đối với mắt người và xử lý số liệu, nhận dạng cho hệ thống tự động. Một trong những ứngdụng đầu tiên của xử lý ảnh là nâng cao chất lượng ảnh báo truyền qua cáp giữa London và New York vào những năm 1920. Thiết bị đặc biệt mã hóa hình ảnh, truyền qua cáp và khôi phục lại ở phía thu. Cùng với thời gian, dokỹthuật máy tính phát triển nên xử lý hình ảnh ngày càng phát triển. Các kỹthuật cơ bản cho phép tìm kiếm, đối sánh những ảnh để tìm ra sự tương tự. Từ năm 1964 đến nay, phạm vi xử lý ảnh và video (ảnh động) phát triển không ngừng. Các kỹthuật xử lý ảnh số (digital image processing) đang được sử dụng để giải quyết một loạt các vấn đề nhằm nâng cao chất lượng thông tin hình ảnh. Và xử lý ảnh số được ứngdụng rất nhiều trong y tế, thiên văn học, viễn thám, sinh học, y tế hạt nhân, quân sự, sản xuất công nghiệp … Mộtứngdụng quan trọng trong xử lý ảnh số mà không thể không nhắc đến đó là đối sánh một ảnh với các frame của một file video nhằm mục đích tìm kiếm sự giống nhau hay khác nhau, qua đó giúp cho quá trình xử lý công việc nhanh hơn mà không mất thời gian kiểm tra từng file video. Chính vì vậy, tôi lựa chọn đề tài “Nghiên cứumộtsốkỹthuậtxácđịnhđộđo tƣơng tựvàứngdụng ” nhằm nghiên cứumộtsốkỹthuậtxácđịnhđộđotươngtự như Trainable similarity measure (TSM) và Histogram dòng cột. Qua đó, tôi có thể đưa ra mộtsố nhận xét và có thể có giải pháp đề xuất để phân loại đối tượng ảnh trong file video hiệu quả hơn. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 9 LỜI NÓI ĐẦU Xử lý ảnh là một lĩnh vực đã và đang được quan tâm của nhiều nhà khoa học trong và ngoài nước bởi tính phong phú và lợi ích của nó được ứngdụng trong khoa học kỹ thuật, kinh tế, xã hội và đời sống con người. Lĩnh vực xử lý ảnh liên quan tới nhiều ngành khác như: hệ thống tin học, trí tuệ nhân tạo, nhận dạng, viễn thám, y học Hiện nay, thông tin hình ảnh đóng vai trò rất quan trọng trong trao đổi thông tin, bởi phần lớn thông tin mà con người thu được thông qua thị giác. Do vậy, vấn đề nhận dạng trong xử lý ảnh, đặc biệt là nhận dạng đối tượng ảnh chuyển động đang được quan tâm bởi yêu cầu ứngdụng đa dạng của chúng trong thực tiễn. Mục đích đặt ra cho xử lý ảnh được chia thành hai phần chính: phần thứ nhất liên quan đến những khả năng từ các ảnh thu lại các ảnh để rồi từ các ảnh đã được cải biến nhận được nhiều thông tin để quan sát và đánh giá bằng mắt, chúng ta coi như là sự biến đổi ảnh (image transformation) hay sự làm đẹp ảnh (image enhancement). Phần hai nhằm vào nhận dạng hoặc đoán nhận ảnh một cách tự động, đánh giá nội dung các ảnh. Quá trình nhận dạng ảnh nhằm phân loại các đối tượng thành các lớp đối tượng đã biết (supervised learning) hoặc thành những lớp đối tượng chưa biết (unsupervised learning). Sau quá trình tăng cường và khôi phục (đối với những ảnh có nhiễu), giai đoạn tiếp theo, người ta phải trích rút các đặc tính quan trọng, quyết định của ảnh cần nhận dạng. Các đặc tính đó có thể là đặc tính hình học, đặc tính ngữ cảnh. Bên cạnh đó, trong những năm gần đây lượng dữ liệu video số đã tăng lên đáng kể cùng với việc sử dụng rộng rãi các ứngdụng đa phương tiện trong giáo dục, giải trí, kinh doanh, y tế… Thực tế này đặt ra các bài toán như: giảm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 10 dung lượng video và tăng tốc độ xử lý, tổ chức lưu trữ và tìm kiếm video hiệu quả, hiểu nội dung video, nhận dạng đối tượng trong video. Mộtsố nhóm nghiên cứu trong và ngoài nước đã đưa ra các phương pháp giải quyết giảm dung lượng video, tổ chức cơ sở dữ liệu video, và đặc biệt lĩnh vực là nhận dạng đối tượng, đối tượng chuyển động trong dữ liệu video cũng đang được quan tâm bởi tính ứngdụng đa dạng và cần thiết của nó trong khoa học, xã hội và đời sống con người. Trong luận văn thạc sĩ với đề tài “Nghiên cứumộtsốkỹthuậtxácđịnhđộđo tƣơng tựvàứng dụng”, tôi tập trung giải quyết bài toán đọc ảnh vàso sánh với các frame trong file video để đưa ra nhận xét. Luận văn gồm phần mở đầu, phần kết luận, và 3 chương nội dung: Chương 1 : Khái quát về xử lý ảnh vàđộđotươngtự trong xử lý ảnh Chương 2 : Mộtsố phương pháp xácđịnhđộđotươngtự Chương 3 : Ứngdụng trong việc phân loại ảnh Được sự giúp đỡ của các thầy cô trong Khoa Công nghệ thông tin - Đại học Thái Nguyên cũng như của bạn bè, đồng nghiệp, đặc biệt là chỉ bảo tận tình của Tiến sĩ Phạm Việt Bình và sự nỗ lực của bản thân, đến nay tôi đã hoàn thành đề tài. Tuy nhiên trong quá trình làm việc, mặc dù đã cố gắng nỗ lực hết sức nhưng do kiến thức và kinh nghiệm vẫn còn hạn chế nên không thể tránh khỏi còn sai sót, em tha thiết kính mong nhận được sự chỉ bảo của các thầy cô để đề tài được hoàn thiện hơn. Em xin chân thành cảm ơn. Thái Nguyên, ngày 30 tháng 10 năm 2009 Học viên thực hiện Trần Quang Huy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 11 CHƢƠNG 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀĐỘĐO TƢƠNG TỰ TRONG XỬ LÝ ẢNH 1.1. Khái quát về xử lý ảnh 1.1.1. Mộtsố khái niệm cơ bản[1] Xử lý ảnh là một trong những mảng quan trọng nhất trong kỹthuật thị giác máy tính, là tiền đề cho nhiều nghiên cứu thuộc lĩnh vực này. Hai nhiệm vụ cơ bản của quá trình xử lý ảnh là nâng cao chất lượng thông tin hình ảnh và xử lý số liệu cung cấp cho các quá trình khác trong đó có việc ứngdụng thị giác vào điều khiển. Quá trình bắt đầu từ việc thu nhận ảnh nguồn (từ các thiết bị thu nhận ảnh dạng số hoặc tương tự) gửi đến máy tính. Dữ liệu ảnh được lưu trữ ở định dạng phù hợp với quá trình xử lý. Người lập trình sẽ tác động các thuật toán tươngứng lên dữ liệu ảnh nhằm thay đổi cấu trúc ảnh phù hơp với các ứngdụng khác nhau. Quá trình xử lý nhận dạng ảnh được xem như là quá trình thao tác ảnh đầu vào nhằm cho ra kết quả mong muốn. Kết quả đầu ra của một quá trình xử lý ảnh có thể là một ảnh “tốt hơn” hoặc một kết luận. Hình 1.1. Quá trình xử lý ảnh Ảnh trong xử lý ảnh có thể xem như ảnh n chiều. Bởi vì, ảnh có thể xem là tập hợp các điểm ảnh. Trong đó, mỗi điểm ảnh được xem như là đặc Ảnh Xử lý ảnh Ảnh tốt hơn Kết luận [...]... sử dụng biểu đồ để xácđịnhđộtươngtựSố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31 http://www.lrc-tnu.edu.vn Chƣơng 2: MỘTSỐ PHƢƠNG PHÁP XÁCĐỊNHĐỘĐO TƢƠNG TỰ 2.1 Độđo dựa trên khoảng cách 2.1.1 Độđo khoảng cách min – max Được thực hiện dựa trên ý tưởng lấy phần giao của hai lược đồ cần so sánh, ta sẽ được một lược đồ, tính tổng các giá trị có được từ lược đồ này cho ta được độ đo. .. những màu giống nhau vàdođó giảm được số chiều và chi phí tính toán Lược đồtựtương quan màu được xácđịnh như sau: c( d ) ( I ) c(,dc) ( I ) c ( d) (I ) là lược đồtựtương quan màu của ảnh I ứng với màu c và khoảng cách d * Ứngdụng - Dùng trong việc phân đo n video - Tạo chỉ mục vàso sánh ảnh - Định vị đối tượng, theo vết đối tượngSo với lược đồ màu, lược đồtựtương quan màu cho những... giá trị một còn những màu khác nhau thì sẽ cí giá trị gần với không 2.2.2 Độđo hỗn hợp Một trong các độđo hỗn hợp (độ đo MSM) được đưa ra bởi Goodall [1] Để tính độđo giống nhau giữa các đối tượng, đầu tiên ta tính độđo cho từng thuộc tính, sau đó kết hợp lại Dưới đây ta sẽ lần lượt xét các độđo cho từng loại thuộc tính liên tục và rời rạc Ngoài ra, ta cũng xét độđo cho loại thuộc tính thứ tự trên... đối tương nghi vấn cũng như nâng cao hiệu quả hệ thống bảo mật cá nhân cũng như kiểm soát ra vào Ngoài ra, có thể kể đến các ứngdụng quan trọng khác của kỹ thuật xử lý ảnh tĩnh cũng như ảnh động trong đời sống như tự động nhận dạng, nhận dạng mục tiêu quân sự, máy nhìn công nghiệp trong các hệ thống điều khiển tự động, nén ảnh tĩnh, ảnh động để lưu và truyền trong mạng viễn thông v.v 1.1.2.4 Một số. .. I ) h( M ) j 1 2.1.3 Độđo khoảng cách toàn phương: K Intersection (h(I), h(M) = K [h(i) h( j )a j 1 j 1 2.2 ij [h(i ) h( j )] Độđo sử dụng trọng số 2.2.1 Độđo có trọng số: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 32 http://www.lrc-tnu.edu.vn dhist(I,Q) = (h(I) – h(Q))TA(h(I) – h(Q)) trong đó, h(I) và h(Q) là những lược đồtươngứng của ảnh I và Q và A là ma trân đồng dạng... niệm “sự tươngtự xuất hiện ở nhiều dạng, diễn xuất, và nhiều ứngdụng Khái niệm “sự tươngtự có nhiều dạng khác nhau Bất chấp những khác biệt, chúng đều có điểm chung: “sự tươngtự được sử dụng để so sánh hai (hay nhiều) đối tượng, hai hoàn cảnh, hai vấn đề, v.v… với nhiều nguyên do khác nhau Luôn có mục đích nào đó với một phép so sánh như thế, bởi vì một hành động tiếp sau đó được thực hiện và cuối... biểu diễn số mức xám từ 0 đến N (số bit của ảnh xám) Trục tung biểu diễn số pixel của mỗi mức xám Hình 1.3 Lược đồ xám của ảnh 1.1.2.3 Một sốứngdụng trong xử lý ảnh Như đã nói ở trên, các kỹ thuật xử lý ảnh trước đây chủ yếu được sử dụng để nâng cao chất lượng hình ảnh, chính xác hơn là tạo cảm giác về sự gia tăng chất lượng ảnh quang học trong mắt người quan sát Thời gian gần đây, phạm vi ứngdụng xử... chuyển động (Motion) * Giới thiệu Chuyển động là một trong những đặc trưng của dữ liệu video Đây là một đặc trưng nổi bật của video mà ảnh tĩnh không có Đặc trưng chuyển động được sử dụng rất rộng rãi trong các nghiên cứu cũng như cài đặt ứngdụng xử lý video sốSố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26 http://www.lrc-tnu.edu.vn Hình 1.15 Đặc trưng chuyển động * Lược đồ chuyển động Nếu... hình, vậy một phút có 1800 khung hình, một giờ có 60x1800 = 108000 khung hình Có thể thấy rằng số lượng khung hình cho mộtđo n video thường là rất lớn, cần phải có một đơn vị cấp cao hơn cho video số * Không gian màu Một không gian màu là một mô hình đại diện cho màu về mặt giá trị độ sáng; một không gian màu xácđịnh bao nhiêu thông tin màu được thể hiện Nó định nghĩa không gian 1,2,3, hoặc 4 chiều... cái gì đó chủ quan; ám chỉ thái độ, giá trị, sở thích, và cá tính giữa những con người tương xứng mức độ nào Có nhiều dạng mô hình về sự tươngtự trong tâm lý học, bốn mô hình nổi bật là hình học (geometric), đặc tính (featural), dựa trên canh lề (alignment-based), và biến đổi (transformational) - Trong lĩnh vực an ninh, quốc phòng để xácđịnh đối tượng ảnh khi muốn xácđịnh vân tay, kiểm tra những băng . chọn đề tài “Nghiên cứu một số kỹ thuật xác định độ đo tƣơng tự và ứng dụng ” nhằm nghiên cứu một số kỹ thuật xác định độ đo tương tự như Trainable similarity measure (TSM) và Histogram dòng. TRẦN QUANG HUY NGHIÊN CỨU MỘT SỐ KỸ THUẬT XÁC ĐỊNH ĐỘ ĐO TƯƠNG TỰ VÀ ỨNG DỤNG Chuyên ngành: Khoa học máy tính Mã số: 60.48.01 LUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG TIN . xét. Luận văn gồm phần mở đầu, phần kết luận, và 3 chương nội dung: Chương 1 : Khái quát về xử lý ảnh và độ đo tương tự trong xử lý ảnh Chương 2 : Một số phương pháp xác định độ đo tương tự