- Giao diện chính của chương trình xác định độ đo tương tự của một ảnh với một trong những khung hình của file video.
Hình 3.1 : Giao diện chính của chương trình
Sau khi tải ảnh và tải một file video vào -> Kết luận độ tương tự của ảnh đó có trong file video.
Hình 3.2: Kết quả thực nghiệm với ảnh có độ tương tự cao
Đối với trường hợp không có ảnh tương tự hoặc độ tương tự nhỏ, chương trình sẽ như sau:
* Đánh giá:
Trong chương trình này tôi sử dụng thuật toán so sánh Histogram để đối sánh các điểm ảnh với nhau.
Khi đọc 1 ảnh vào chương trình sẽ tự động tính Histogram của ảnh đó, tiếp theo ta đọc một file video vào, và ta nhấn nút seach chương trình sẽ tự tách mỗi frame của file video ra và so sánh với histogram của file ảnh đó, lần lượt cho đến khi hết các Frame và chọn ra frame có độ tương tự lớn nhất để kết luận..
Kết quả cho thấy đây mới chỉ là bước đầu sử dụng thuật toán so sánh hai ảnh với nhau, đây là bước khởi đầu quan trọng trong quá trình đối sánh ảnh để sau này phát triển tốt hơn.
PHẦN KẾT LUẬN
Thực tế của việc ứng dụng các thuật toán trong xử lý ảnh là rất lớn, rất nhiều các nhà lập trình đã nghiên cứu để đưa ra những phương pháp tìm kiếm, đối sánh ảnh nhằm ứng dụng rất lớn trong công tác an ninh, quốc phòng…
Với thời gian còn hạn chế, trong Luận văn này tôi đã bước đầu tìm hiểu một số thuật toán như Transnable Similarity Measure (TMS) và Histogram để đối sánh một ảnh với từng frame trong file video. Đây cũng có thể được coi là nền tảng trong quá trình xử lý ảnh mà tôi đã tích luỹ được. Tuy nhiên trong quá trình nghiên cứu, mức độ thành công của tất cả các thuật toán tôi nghiên cứu là chưa được thành công lắm, chính vì vậy nếu có điều kiện tôi sẽ tiếp tục nghiên cứu và cài đặt thành công các thuật toán này một cách tốt nhất.
TÀI LIỆU THAM KHẢO
[1]. Đỗ Năng Toàn, Phạm Việt Bình (2007), Giáo trình môn học Xử lý ảnh. [2]. Lương Mạnh Bá, Nguyễn Thanh Thủy (2002), Nhập Môn Xử lý ảnh số, Nxb Khoa học và Kỹ thuật, 2002.
[3]. Anil K.Jain (1989), Fundamental of Digital Image Processing, Engwood cliffs. Prentice Hall
[4]. J.R.Paker (1997), Algorithms for Image processing and Computer. John Wiley & Sons, Inc. Vision
[5]. Randy Crane (1997), A simplified approach to image processing, Prentice-Hall, Inc.
[6]. John C.Russ (1995), The Image Procesing Handbook. CRC Press, Inc. [7]. Adrian Low (1991), Introductory Computer Vision and Image, Copyright (c) 1991 by McGrow Hill Book Company Processing (UK) Limited.
[8]. T. Pavlidis (1982), Algorithms for Graphics and Image Processing, Computer Science Press.
[9]. Lương Xuân Cương, Ðỗ Xuân Tiến, Ðỗ Trung Tuấn (2004), “Kỹ thuật nâng cao khả năng phân đoạn dữ liệu video ứng dụng trong e-learning”, Báo cáo khoa học tại Hội thảo quốc gia “Một số vấn đề chọn lọc của Công nghệ thông tin”, Đà Nẵng, tháng 8/2004.
[10]. Morpher Page, Website Sugano, M., Nakajima, Y., Yanagihara, H., Yoneyama, A., A fast scene change detection on MPEG coding parameter domain, International Conference on Image Processing, 1998. ICIP 98. Proceedings. 1998, Volume: 1, 1998, pp. 888 – 892
[11]. Nagasaka, A., Tanaka, Y., Automatic Video Indexing and Full-Video Search for Object Appearances, Visual Database Systems, II, Elsevier Science Publishers, 1992, pp. 113 – 127
[12]. Novak, C.L.; Shafer, S.A., Anatomy of a color histogram, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1992, pp. 599 – 605
[13]. Shahraray, B., Scene Change Detection and Content-Based Sampling of Video Sequences, Digital Video Compression: Algorithms and Technologies, A. Rodriguez, R. Safranek, E. Delp, Editors, Proc. SPIE 2419, 1995, pp. 2–13 [14]. Sawhney, H.S., Hafner, J.L., Efficient color histogram indexing, Proceedings of the IEEE International Conference on Image Processing, Volume: 2 , 1994 , pp. 66 – 70
[15]. Swanberg, D., Shu, C., & Jain, R. (1993). Knowledge-guided parsing in video databases. Proceedings. of SPIE Symposium on Electronic Imaging: Science and Technology, San Jose, CA, 13-24.