và trình bày khái quát các phần còn lại của Vật lý Quang, Nguyên tử...- Đ ố i với các ngành kỹ thuật, các phần Điện, Điện từ.... Lực tương tác giữa các vật tích điện đứng yên gọi là lực
Trang 1L U Ô N G D U Y Ê N B Ì N H
• % ẩ ằ ỉ ĩ - ^ " ' • ' • ' • ^ • ' • • • '; t: ^ ỹ ' ~ ' ' : V y "::
Trang 2ĩ •
Trang 3Bản quyền thuộc HEVOBCO - Nhà xuất bản Giáo dục
04 - 2008/CXB/389 - 1999/GD Mã số : 7K618y8 - DAI
Trang 4X ơ i nối đau
Bộ giáo trình Vật lý đại cương gồm hai tập được biên soạn cho sinh
viên các trưầng Cao đẳng
Tập hai của cuốn giáo trình này trình bày sâu hem các phần Điện, Điện từ và trình bày khái quát các phần còn lại của Vật lý (Quang, Nguyên tử )- Đ ố i với các ngành kỹ thuật, các phần Điện, Điện từ có tác dụng trực tiếp quan trọng làm cơ sở cho nhiều lĩnh vực kỹ thuật như kỹ thuật Điện, kỹ thuật Điện từ, Điều khiển và Điều khiển tự động, Sinh viên ngành kỹ thuật cần nắm thật vững để có điều kiện đi sâu các ngành kỹ thuật đó hem là đi vào các lĩnh vực không có ứng dụng trực tiếp
Giống như ở tập một, các phần lý thuyết, bài tập có dấu * dành cho các yêu cầu cao hem sau này - chẳng hạn dành cho các sinh viên học chuyển tiếp từ Cao đẳng lên Đại học và có thể bỏ qua khi thấy chưa cần thiết Các bài tập ở đây chia làm 3 loại:
a) Bài tập ví dụ (có lầi giải);
b) Bài tập tự giải (có lầi giải trong sách bài tập);
c) Bài tập m ở rộng: Trình bày những hiện tượng, hiệu ứng những định luật, quy tắc không trình bày trong phần lý thuyết, nhưng có ứng dụng, lý giải trong thực tế
TÁC GIẢ
Trang 5Chương Ì
ĐIỆN TRƯỜNG TỈNH
•
§ 1 Đ I Ệ N T Í C H 1.1 Hai loại điện tích
Từ lâu ngưầi ta đã biết một số vật khi đem cọ xát vào len, dạ, lụa, lông
thú sẽ c ó k h ả n ă n g hút được các vật nhẹ Ta nói các vật ấy đã tích đ i ệ n Thực n g h i ệ m chứng tỏ rằng trong tự n h i ê n chỉ c ó hai l o ạ i đ i ệ n tích:
đ i ệ n tích d ư ơ n g và đ i ệ n tích â m
Thực n g h i ệ m c ũ n g chứng tỏ rằng các vật tích đ i ệ n c ó t ư ơ n g tác v ớ i nhau: các đ i ệ n tích c ù n g dấu đ ẩ y nhau, c á c đ i ệ n tích trái dấu h ú t nhau Lực
tương tác giữa các vật tích điện đứng yên gọi là lực tĩnh điện hay lực Culông
Ì 2 Lượng tử hoa điện tích
Các vật xung quanh ta đều cấu tạo bởi các phán tử, nguyên tử, ;
trong m ỗ i n g u y ê n tử c ó hạt n h â n và c á c electron trong hạt n h â n c ó proton
và neutron C á c hạt đ ó n ế u tích đ i ệ n thì đ i ệ n tích ấy là m ộ t số n g u y ê n của
đ i ệ n tích n g u y ê n t ố :
- e = - l , 6 1 0 "l 9C
Ta nói rằng đ i ệ n tích bị lượng tớ hóa
1.3 Bảo toàn điện tích
Trong các quá trình biến đổi của một hệ (biến đổi phân tử, nguyên tử,
hạt n h â n ) n g ư ầ i ta n h ậ n thấy rằng: Tổng đại số các điện tích của hệ
trước và sau quá trình biến đổi là không thay đổi
Trang 6N ó i c á c k h á c : điện tích không tự sinh ra và không tự mất đi, nó chỉ
truyền từ vật này sang vật khác
P h á t b i ể u t r ê n đ â y là n ộ i dung của định luật bảo toàn điện tích, m ộ t
trong những đ ị n h l u ậ t c ơ bản của c á c q u á trình b i ế n đ ổ i v ề đ i ệ n
§2 ĐỊNH LUẬT CULÔNG
Năm 1785, nhà Vật lý học Culông đã làm thí nghiệm thiết lập được
định luật mang t ê n ô n g v ề lực t ư ơ n g tác giữa hai đ i ệ n t í c h đ i ể m
Theo đ ị n h nghĩa, điện tích điểm (hay hạt đ i ệ n t í c h ) là m ộ t v ậ t t í c h đ i ệ n
c ó k í c h thước n h ư m ộ t chất đ i ể m ( m ộ t hạt)
2 Ì Phát biểu định luật Culông
Lực tương tác tĩnh điện giữa hai điện tích điểm Ọj và q 2 đặt cách nhau
một khoảng r:
- Có phương nằm trên đường thẳng nối qj và q 2 ;
-Có chiều như hình Lia khi qị,qi cùng dấu, hoặc có chiều như hình
ỉ Ab khi q Ịt q 2 trái dấu;
- Có độ lớn tỷ lệ thuận với tích các độ lớn của hai điện tích và tỷ lệ
nghịch với bình phương khoảng cách r;
- Phụ thuộc vào môi trường xung quanh
T ừ p h á t b i ể u trên đ â y , c ó t h ể v i ế t ra đ ộ l ớ n của hai lực t ư ơ n g t á c Fị
(lực tác d ụ n g lên q,) và F2 (lực tác d ụ n g lên q2) :
F F khl^l (L2)
S ĩ
Trang 7b)
0
H/nh f.í a) T r o n g c ô n g thức trên, k là m ộ t h ệ số t ù y thuộc v à o c á c đ ơ n vị đ o
T r o n g h ệ SI, đ i ệ n t í c h đ o bằng c u l ô n g (C), đ ộ d à i đ o bằng m é t ( m ) , đ ộ l ớ n của c á c lực đ o b ằ n g n i u t ơ n ( N ) k h i đ ó :
k = 9 1 09
N m 2\
N g ư ầ i ta c ũ n g k ý h i ệ u
k = Ì 47te(>
trong đ ó , h ằ n g s ố 60 được g ọ i là hằng số điện:
Ì Ì
(1.3)
(1.4)
e„ = 47ĩk 4 7 1 9 l o9
b) H ằ n g số e trong c ô n g thức trên là m ộ t đ ạ i lượng t ù y thuộc v à o m ô i
trưầng x u n g quanh ( m ô i trưầng c á c h đ i ệ n ) ; 6 c ó g i á trị > Ì được g ọ i là
hằng số điện môi của m ô i trưầng
Trang 8Theo c ô n g thức (1.6) ta c ó thể k ế t l u ậ n :
Lực tương tác tĩnh điện giữa các điện tích đặt trong môi trường cách
điện giảm đi s lần so với lực tương tác đó khi đặt trong chân không
2.2 Biểu thức vectơ của định luật Culông
lượng 9,1.10 3 1k g , đ i ệ n tích bằng - e = - 1 , 6 1 0 1 9c H ạ t electron c ó t h ể coi
là c h u y ể n đ ộ n g x u n g quanh hạt proton ( g i ả t h i ế t là đ ứ n g y ê n ) theo m ộ t q u ỹ
Trang 92 C ư ầ n g đ ộ lực hấp d ẫ n tác dụng lên hạt electron:
m „ m „ Fhd = G
-Ì Ì 6,67.10
v = 2,18.10' ,6 m
Bài tập ví dụ 1.2
H a i q u ả cầu n h ỏ g i ố n g nhau, k h ố i lượng r i ê n g là D c ù n g mang đ i ệ n tích q gắn v à o hai đ ầ u A và B của hai d â y m ả n h c ù n g đ ộ dài O A và O B c ó chung đ ầ u o c ố đ ị n h
K h i m ô i t r ư ầ n g x u n g quanh là c h â n k h ô n g và ở trạng thái c â n bằng thì
A và B n ằ m t r ê n đưầiíg thẳng ngang sao cho g ó c A O B = 2 a
K h i m ô i t r ư ầ n g xung quanh là m ộ t chất đ i ệ n m ô i đ ồ n g chất c ó k h ố i lượng r i ê n g D0 ( < D ) , hằng số đ i ệ n m ô i e thì ở trạng thái c â n bằng, g ó c
Trang 10P0 = m0g = D0V g
m0 = D0V là k h ố i lượng đ i ệ n m ô i c ó t h ể tích bằng t h ể t í c h q u ả c ầ u
Trang 11N h ư vậy, c ó thể coi là k h i n h ú n g vào trong đ i ệ n m ô i , trọng lượng của
m ỗ i quả cầu bị g i ả m đi và c ó cưầng đ ộ bằng:
3 Ì Khái niệm điện truồng
Để giải thích sự xuất hiện lực tương tác giữa các vật tích điện đặt cách
xa nhau, n g ư ầ i ta quan n i ệ m rằng xung quanh một h ệ vật tích đ i ệ n , t ồ n t ạ i
một dạng vật chất g ọ i là đ i ệ n trưầng Đặc tnỡĩg của điện trường là gây ra
lực điện tác dụng lên mọi vật tích điện khác đặt trong khoảng không gian
có điện trường
3.2 Vectơ điện trưỗng
Đặt một điện tích điểm q0 tại một điểm M trong khoảng không gian có
đ i ệ n trưầng T r ê n q0 xuất hiện lực điện F tác dụng Thực n g h i ệ m chứng tỏ
F
rằng, t ỷ số — là m ộ t đ ạ i lượng k h ô n g phụ thuộc q0 m à chỉ phụ thuộc vào
q<>
các đ i ệ n tích g â y ra đ i ệ n trưầng và vị trí đ i ể m M Theo định nghĩa, đ ạ i
lượng n à y được g ọ i là vectơ diện trường* t ạ i M , k ý hiệu là:
Ẽ = — (1.11)
q0
* Nói chính xác là vectơ điện trưầng tĩnh
Trang 12Đ ộ lớn của v e c t ơ đ i ệ n trưầng được g ọ i là cường độ điện trường T r o n g
hệ đ ơ n vị Sỉ, đ ơ n vị đ o cưầng đ ộ đ i ệ n trưầng là v ò n trên m é t ( V / m )
T ừ (1.11) c ó t h ể viết biểu thức của lực đ i ệ n F tác d ụ n g lên đ i ệ n tích
Ì q„qi ri
i 4 T O „ S i f lị trong đ ó ĩ = O i M * 0 ( i = 1,2, 3, , n)
Trang 1347ĩe( )s r{ Tị
V ậ y c ô n g thức (1.16) c ó thể d i ễ n tả n h ư sau: Vectơ điện trường tại M
do một hệ điện tích điểm gây ra bằng tổng hợp các vectơ điện trường do
từng điện tích điểm gây ra tại M
P h á t b i ể u trên đ â y được g ọ i là nguyên lý chổng chất điện trường
K ế t q u ả n à y c ó t h ể á p dụn g cho trư ần g hợp h ệ đ i ệ n tíc h được p h â n b ố
liên tục (chẳng hạn m ộ t vật tích đ i ệ n c ó kích thước bất k ỳ )
Thực v ậ y , ta tưởng tượng chia vật tích đ i ệ n t h à n h n h i ề u phần n h ỏ sao
cho đ i ệ n tích dq mang trên m ỗ i phần đ ó c ó thể coi l à đ i ệ n tích đ i ể m N h ư
Trang 14K h i đ ó :
Ê - Ị Ì pdT _
D ư ớ i đ â y ta x é t m ộ t vài v í d ụ ứng d ụ n g n g u y ê n lý c h ồ n g chất đ i ệ n trưầng đ ể x á c đ ị n h v e c t ơ c ư ầ n g đ ộ đ i ệ n trưầng g â y ra b ở i m ộ t h ệ đ i ệ n tích
Trang 15X
Hình 1.4
Er = 47ie„er
Er = — — 27ĩ£0sr
Ez= 0
(1.19)
15
Trang 16V ì lý do đ ố i xứng n ê n vectơ E n ằ m dọc theo trục của v ò n g d â y D o đ ó
n ế u c h i ế u đ ẳ n g thức v e c t ơ trê n đ â y l ê n trục của v ò n g d â y ta đư ợc :
E = — - — n
47ts08 r Với OM = z ta có thể viết:
r = Ậ 2 + R2
Trang 18E = I dE toàn bộ đĩa tròn
Trang 19E =
Khi R -» 00, đĩa tròn trở thành một mặt phang vô hạn tích điện đều,
mật đ ộ đ i ệ n mặt ơ Trong điều k i ệ n đ ó :
ơ
E =
N ế u ơ < 0 thì trong (1.22) ph ả i v i ế t lơi thay cho ơ
N h ậ n xét về đ i ệ n trưầng của mặt phang vô hạn tích đ i ệ n đ ề u : vectơ Ẽ tại m ỗ i b ê n của mặt phang ấy có phương, chiều và cưầng đ ộ k h ô n g đ ổ i
C h ú n g hướng từ mặt phang tích điện đi ra k h i ơ > 0 và c ó hướng ngược l ạ i
khi ơ < 0
+ + + + +
+ + + + +
Hình 1.7 Bài tập ví dụ 1.6
Hai mật phang vô hạn song song tích
điện đ ề u , m ậ t đ ộ đ i ệ n mặt l ầ n lượt bằng + ơ ,
- ơ (ơ > 0) X á c định đ i ệ n trưầng của hai
mặt đ i ệ n tích ấy (hình 1.8)
Đáp số
ỉ Trong khoảng k h ô n g gian giữa hai
mặt phang; đ i ệ n trưầng đ ề u , hướng từ mặt
điện tích d ư ơ n g sang đ i ệ n tích â m , cưầng
đ ộ bằng:
„ ơ
E = 0
*• -+• -
Trang 203.5 Đ ư ò n g s ứ c đ i ệ n t r ư ò n g
Trong m ộ t đ i ệ n trưầng bất k ỳ , v e c t ơ đ i ệ n trưầng Ẽ c ó t h ể thay đ ổ i từ
đ i ể m n à y sang đ i ể m k h á c v ề h ư ớ n g và đ ộ l ớ n V ì t h ế , đ ể c ó đ ư ợ c m ộ t h ì n h ảnh cụ t h ể về sự thay đ ổ i ấy,
n g ư ầ i ta d ù n g k h á i n i ệ m đ ư ầ n g
sức đ i ệ n trưầng Theo đ ị n h nghĩa,
đường sức điện trường là đường
cong mà tiếp tuyến tại mỗi điểm
của nó trùng với phương của
vectơ điện trường tại điểm đó;
chiều của đường sức điện trường H i n h 1 9 Đ ư ầ n g s ứ c đ i ệ n t r ư ầ n g
tại một điểm là chiêu của vectơ
điện trường tại dó ( h ì n h 1.9)
T ậ p hợp c á c đ ư ầ n g sức đ i ệ n trưầng g ọ i là điện phổ C ó t h ể l à m thí
n g h i ệ m đ ể x á c đ ị n h đ i ệ n p h ổ của m ộ t đ i ệ n trưầng ( t ư ơ n g t ự n h ư thí
n g h i ệ m v ề từ p h ổ )
H ì n h 1.10 m ô tả đ i ệ n p h ổ của m ộ t đ i ệ n tích đ i ể m (a), hai đ i ệ n tích
đ i ể m bằng nhau (b), hai đ i ệ n tích đ i ể m đ ố i nhau (c)
Các đường sức điện trường có những tính chất chung sau:
a) Qua m ộ t đ i ể m trong k h ô n g gian chỉ v ẽ được m ộ t đ ư ầ n g sức
Trang 21d)
Hình 1.10 Điện phổ
Trang 22§ 4 Đ I Ệ N T H Ế
4 1 C ô n g c ủ a l ự c t ĩ n h đ i ệ n Tín h c h ấ t t h ế c ủ a t r ư ò n g t ĩ n h đ i ệ n
à) Công của lực tĩnh điện
G i ả sử đ i ệ n tích q0 dịch c h u y ể n trong đ i ệ n trưầng của m ộ t đ i ệ n tích
đ i ể m q Ta h ã y tính c ô n g của lực tĩnh đ i ệ n trong sự dịch c h u y ể n đ i ệ n tích
q0 t ừ đ i ể m M t ớ i đ i ể m N trên m ộ t đ ư ầ n g cong (C) bất k ỳ ( h ì n h 1.11) ứng
v ớ i trưầng hợp q v à qG l à đ i ệ n tích d ư ơ n g
Theo c ô n g thức (1.12), lực t á c d ụ n g l ê n đ i ệ n t í c h q0 b ằ n g F = q0Ẽ trong đ ó E l à v e c t ơ đ i ệ n trư ần g g â y b ở i đ i ệ n t í c h đ i ể m q t ạ i v ị t r í củ a q0
V e c t ơ Ẽ được x á c định b ở i c ô n g thức (1.15)
N
Hình 1.11 Công của lực tĩnh điện
Công của lực tĩnh điện trong chuyển dầi vô cùng nhỏ ds bằng:
(1.23)
Trang 23V ậ y c ô n g của lực tĩnh đ i ệ n trong sự chuyển d ầ i đ i ệ n tích q0 từ M tới N là:
(1.25)
C ô n g thức (1.25) chứng t ỏ rằng: công của lực tĩnh điện trong sự dịch
chuyển điện tích q () trong điện trường của một điện tích điểm không phụ thuộc vào dạng của đường cong dịch chuyển mà chỉ phụ thuộc vào vị trí điểm đầu và điểm cuối của chuyển dời
D ễ d à n g thấy (1.25) v ẫ n đ ú n g k h i q0 và q có dấu bất k ỳ
N ế u ta dịch chuyể n đ i ệ n tíc h q0 trong điện trưầng của m ộ t h ệ đ i ệ n tích
đ i ể m , k ế t quả trên v ẫ n đ ú n g Thực vậy, trong trưầng hợp n à y , lực điện
đ i ệ n trưầng bất k ỳ thì ta có thể coi điện trưầng này gây ra bởi h ệ vô số
đ i ệ n tích đ i ể m và bằng lý luận tương tự như trên, ta đi tới k ế t l u ậ n sau:
23
Trang 24Công của lực tĩnh điện trong sự dịch chuyển điện tích điểm q () trong một điện trường không phụ thuộc vào dạng của đường cong dịch chuyển
mà chỉ phụ thuộc vào điểm đầu và điểm cuối của chuyển dời
b) Tính chất thế của trường tĩnh điện
Theo k ế t q u ả trên, n ế u ta dịch c h u y ể n q0 theo m ộ t đ ư ầ n g cong k í n bất
Tích phân (|Ẽ.ds được định nghĩa là hiu số vectơ điện trường dọc
theo mạch kín V ậ y (1.27) được p h á t b i ể u n h ư sau:
Lim số của vectơ điện trường (tĩnh) dọc theo một mạch kín bằng không
P h á t b i ể u trên đ â y và b i ể u thức ( Ì 27) đặc t r ư n g cho t í n h chất t h ế của
trưầng tĩnh đ i ệ n
4.2 Thế nàng của một điện tích trong điện truồng
Trong cơ học chúng ta đã nghiên cứu trưầng lực thế Ta biết rằng công
của lực tác d ụ n g lên vật c h u y ể n đ ộ n g trong trưầng lực t h ế bằng đ ộ g i ả m
t h ế n ă n g của vậ t đ ó tron g trư ần g lực T ư ơ n g t ự n h ư v ậ y , c ô n g của lực tĩnh
đ i ệ n tác d ụ n g lên đ i ệ n tích c h u y ể n đ ộ n g trong đ i ệ n trưầng c ũ n g bằng đ ộ
g i ả m t h ế n ă n g w của đ i ệ n tích đ ó trong đ i ệ n trưầng
Trang 25N N hay A M N = ỊdA = J q0Ẽ d s = WM - WN (1.28)
t r o n g đ ó : W M - WN là đ ộ g i ả m t h ế n ă n g của đ i ệ n tích đ i ể m qG trong sự dịch c h u y ể n đ i ệ n tích đ ó từ đ i ể m M t ớ i đ i ể m N trong đ i ệ n trưầng
Đ ể cụ t h ể , trước hết ta xét trưầng hợp đ i ệ n tích q0 dịch c h u y ể n trong
đ i ệ n trưầng của m ộ t đ i ệ n tích đ i ể m q Theo c ô n g thức (1.25) ta c ó :
k h ô n g ảnh h ư ở n g gì đ ế n p h é p tính trong thực tế, vì trong những p h é p tính
đ ó ta chỉ gặp c á c h i ệ u t h ế n ă n g V ì v ậ y , n g ư ầ i ta thưầng quy ước chọn t h ế
n ă n g của đ i ệ n tích đ i ể m q0 bằng k h ô n g k h i n ó ở c á c h xa q v ô c ù n g ; k h i đ ó theo (1.29) ta c ó :
w„ = q"q + c
47Ĩ6()600 suy ra: c = Woo = 0
Trang 26Sự phụ thuộc của t h ế n â n g tương tác của h ệ hai đ i ệ n t í c h v à o k h o ả n g
c á c h giữa c h ú n g được b i ể u d i ễ n trên h ì n h (1.12)
của hệ hai điện tích điểm
V ậ y : Thế năng của điện
tích điểm q () tại một điểm
trong điện trường là một đại
lượng có giá trị bằng công của lực tĩnh điện trong sự dịch chuyển điện tích
đó từ điểm đang xét ra xa vô cùng
Ghi chú: N h ữ n g k ế t q u ả n à y chỉ đ ú n g trong trưầng hợp đ i ệ n trưầng ở
xa vô c ù n g bằng 0 (nghĩa là c á c đ i ệ n tích chỉ n ằ m trong m ộ t k h o ả n g k h ô n g gian hữu hạn)
Trang 27v = - (1.33)
q0
được g ọ i là điện thế tại điểm đang xét
Đ i ệ n t h ế gây ra bởi m ộ t điện tích đ i ể m q t ạ i đ i ể m c á c h đ i ệ n tích đ ó
m ộ t khoảng r cho b ở i :
v = — ỉ — (1.34) 47is( )sr
Trong (1.34) v ớ i hệ đơn vị SI, r tính ra mét; q tính ra c u l ô n g và điện
điện thế: đ i ệ n t h ế t ạ i m ỗ i đ i ể m do một hệ đ i ệ n tích gây ra bằng tổng (đại
số) các đ i ệ n t h ế do từng đ i ệ n tích gây ra tại đ i ể m ấy
Trong trưầng hợp nếu c ó m ộ t hệ điện tích được phân b ố liên tục trong
k h ô n g gian thì ta c ó thể coi hệ đ i ệ n tích đ ó n h ư m ộ t hệ vô số điện tích
đ i ể m dq và đ i ệ n t h ế gây ra bởi điện tích tại một đ i ể m n à o đ ó trong điện
trưầng được tính theo c ô n g thức sau:
v= í dV= í —— ^ (1.35a)
J • 4-718 £ r
hệ điện tích hệ điện tích o trong đ ó r là khoảng c á c h từ dq đ ế n đ i ể m đang xét Chú ý rằng c ô n g thức
(1.35a) chỉ đ ú n g k h i c á c điện tích nằm trong một khoảng k h ô n g gian
Trang 28V ậ y : Công của lực tĩnh điện trong sự dịch chuyển điện tích điểm q„ từ
điểm M tới điểm N trong điện trường bằng tích số của điện tích q 0 với hiệu điện thế giữa hai điểm M và N đó
b)Ý nghĩa của điện thế và hiệu điện thế
T ừ (1.37) ta suy ra:
VM-VN=^- (1.37a)
q„
N ế u l ấ y q0 = + 1 đ ơ n vị đ i ệ n tích thì VM - VN = A M N
V ậ y : Hiệu điện thế giữa hai điểm M và N trong điện trường là đại
lượng có giá tri bằng công của lực tĩnh điện trong sự dịch chuyển một đơn
vị điện tích dương từ điểm M tới điểm N
Trong c á c c ô n g thức (1.37), (1.37a), v ớ i h ệ đ ơ n vị SI, A M N tính ra
j u n (J), q0 tính ra c u l ô n g (C) và đ i ệ n t h ế tính ra v ò n ( V )
N ế u l ấ y q0 = + Ì đem vị đ i ệ n tích và c h ọ n đ i ể m N ở xa v ô c ù n g thì:
V M - Voo = AM00 ( n h ư n g ta quy ước Woo = 0) do đ ó :
V x = — = 0 vàVM=AMoo
Vậy: Điện thế tại một điểm trong điện trường là đại lượng có giá trị
bằng công của lực tĩnh điện trong sự dịch chuyển một đơn vị điện tích dương từ điểm đó ra xa vô cùng
Qua trên ta thấy, do quy ước Woo = 0 n ê n Voo = 0 N h ư v ậ y t ư ơ n g tự với t h ế n ă n g , đ i ệ n t h ế được x á c đ ị n h sai k h á c m ộ t h ằ n g số c ộ n g G i á trị
của hằng số cộng n à y phụ thuộc v à o mức điện thế không m à ta c h ọ n Tuy
n h i ê n , sự lựa c h ọ n mức đ i ệ n t h ế k h ô n g k h ô n g ảnh h ư ở n g đ ế n c á c p h é p tính trong thực t ế vì t r o n g c á c p h é p t í n h đ ó ta ch ỉ gậ p h i ệ u đ i ệ n t h ế
T r o n g n h i ề u trư ần g hợ p thực t ế , n g ư ầ i ta c ũ n g t h ư ầ n g qu y ước đ i ệ n t h ế
của trái đ ấ t bằng k h ô n g K h i n g h i ê n cứu t í n h chất của vật d ẫ n c â n bằng tĩnh đ i ệ n ta sẽ th ấ y r ằ n g đ i ệ n t h ế t ạ i m ọ i đ i ể m trê n c ù n g m ộ t vậ t d ẫ n đ ề u bằng nhau D o đ ó , n ế u ta n ố i m ộ t vật d ẫ n n à o đ ố i v ớ i đất (bằng m ộ t vật
d ẫ n ) thì đ i ệ n t h ế của vật d ẫ n đ ó c ũ n g sẽ bằng k h ô n g K h i đ ó đ i ệ n t h ế của vật d ẫ n được coi n h ư k h ô n g đ ổ i
Trang 29Bài tập ví dụ 1.7
V ò n g d â y t â m o b á n kính R, tích điện q phân b ố đ ề u X á c định điện
t h ế t ạ i đ i ể m M n ằ m trê n trục của vòn g dây : O M = z
1 , 1 + sin VƯ , 2 ,„ - õl n T — ~ ~ + (c o n s t)
sin xụ 2 Ì - sin lị/
29
Trang 31Bài tập ví dụ 1.9*
Cho m ộ t m ậ t cầu (O, R ) tích đ i ệ n đ ề u , m ậ t đ ộ đ i ệ n m ặ t ơ X á c định
đ i ệ n t h ế t ạ i đ i ể m M c á c h O: O M = r Xét trưầng hợp r > R và r < R
Giải
Chia m ặ t cầu t h à n h những phần tử đ ớ i cầu có chung trục O M
M ộ t phần tử đ ớ i cầu bất k ỳ n ằ m giữa hai mặt phang v u ô n g g ó c v ớ i
31
Trang 32V = ơ R - V R2+ r2- 2 r z 2s,.s
Trang 33Đĩa tròn (O, R) tích điện đều q, mật độ điện mặt ơ Xác định điện thế
tại điểm M trên trục của đĩa cách tâm O: OM = z
Giải
M
\
\ Ị\
Chia đĩa tròn thành những phần tử điện tích hình vành khăn tâm o
Một phần tử diện tích bất kỳ nằm trong hai vòng tròn bán kính r và r + dr
chứa điện tích:
dq = ơdS = ơ27ĩrdr
Trang 34g â y ra t ạ i M đ i ệ n t h ế :
d V = Ì dq Ì ơ 2 ĩ t r d r
4™ o S V r2+ Z2 47re0e 7 7 7 7 2rdr
hai đ i ệ n tích đ i ể m q Ị v à q2 đ ặ t c á c h nhau m ộ t k h o ả n g r cho b ở i :
Chẳng hạn với hệ 3 điện tích điểm qj, q2, q3 đặt cách nhau lần lươt
những k h o ả n g rI 2, r2 3, r3| , n â n g lượng tương tác của h ệ cho b ở i :
Trang 355.1 Tính hiệu điện thế theo vectơ điện truồng
Theo mục 4.1 của §4, công của lực điện tác dụng lên điện tích điểm q khi
điện tích này chuyển dầi từ điểm A đến điểm B trong điện trưầng cho bởi:
Trong đó phép tích^ phân được tính theo một đưầng cong bất kỳ nối
l i ề n A B T í c h p h â n ị E d s được g ọ i là lưu số của vect ơ đi ệ n trưầng dọc
AB
35
Trang 36theo đ ư ầ n g cong Ạ B V ậ y (1.44) c ó t h ể phát b i ể u : H i ệ u đ i ệ n t h ế giữa hai
đ i ể m A , B c ó g i á trị b ằ n g lưu số của vectơ đ i ệ n trưầng dọc theo m ộ t đưầng cong n ố i l i ề n A và B
N ế u B t r ù n g v ớ i A ta l ạ i tì m đư ợc : c f Ẽ d i = 0 ( 1 2 7 ) d i ễ n t ả t í n h chất
t h ế của đ i ệ n trư ần g t ĩ n h
ứng dụng: C ô n g thức (1.44) cũng được d ù n g đ ể t í n h đ i ệ n t h ế nhất là
đ ố i v ớ i trưầng hợp đ i ệ n tích n ằ m trong m ộ t m i ề n v ô hạn K h i đ ó c ô n g thức tính đ i ệ n t h ế (1.35a) k h ô n g c ò n đ ú n g nữa
Bài tập ví dụ 1.11
T í n h đ i ệ n t h ế g â y b ở i m ộ t d â y thẳng d à i v ô h ạ n t í c h đ i ệ n đ ề u , mật độ
đ i ệ n d à i là X, t ạ i m ộ t đ i ể m c á c h d â y m ộ t k h o ả n g r
+ + + + + + + + + +
(X)
rB
Hình 1.17 Giải
Trang 37• I n — x „ 1 27I£0S rA 27ie08 rB
1
• I n — + c 27t80e rB
T ạ i m ộ t đ i ể m M c á c h d â y một khoảng r:
V = - * - l n ! + C 27ĨS„S r
là hai lớp đ i ệ n m ô i , hằng số đ i ệ n m ô i lần lượt là Si và e2, bề d à y l ầ n lượt là
dị và d2 (dị + d2 = d) T í n h hiệu điện t h ế giữa hai mặt phang ấy
Trang 38N ế u t o à n b ộ k h o ả n g k h ô n g gian giữa hai t ấ m là m ộ t ch ấ t đ i ệ n mô i (đồng chất và đ ẳ n g hướng) c ó hằng số đ i ệ n m ô i s thì:
= - d V = E.ds = Eds cosa
trong đ ó : Ecosa = Es là h ì n h c h i ế u của
phát b i ể u : Hình chiếu của vectơ điện trưởng lên một phương nào đó bằng
ị với dấu trừ) đạo hàm của điện thế theo phương ấy
Trong trưầng hợp tổng q u á t , v e c t ơ đ i ệ n trưầng E ( Ex, Ey, Ez) và đ i ệ n
t h ế V đ ề u ph ụ thuộ c v à o toa đ ộ (x, y, z) của đ i ể m đ a n g xét Á p d ụ n g h ệ
Trang 39thức (Ì 47) l ầ n lượt cho ba p h ư ơ n g X, y, z và c h ú ý rằng c á c đ ạ o h à m của V
l ầ n lượt theo X, y, z p h ả i là đ ạ o h à m riêng phần, ta được:
ứng dụng: C á c h ệ thức (1.47), (IMã), (1.48) cho ta m ộ t p h ư ơ n g p h á p
tính c ư ầ n g đ ộ đ i ệ n trưầng k h i biết được b i ể u thức của đ i ệ n t h ế theo X, y, z
Bài tập ví dụ 1.13
V à n h t r ò n ( O , R ) tích đ i ệ n đ ề u q (q > 0) X á c định cưầng đ ộ đ i ệ n trưầng t ạ i M trên trục v ò n g d â y c á c h t â m O: O M = z
Trang 40V ậ y , á p dụng (1.47a) ta suy ra:
Á p đụng (1.47) cho c á c k ế t q u ả t ì m được của bài tập ví d ụ 1.9*, ta suy ra:
E = 0 k h i r < R
E = —í— 4 khi r > R
47C808 ĩ