ĈӕLWѭӧQJYjSKҥPYLQJKLrQFӭX
2.1 ĈӕLWѭӧQJQJKLrQFӭX ĈӕLWѭӧQJQJKLrQFӭXFӫDOXұQiQOjcáFGҥQJFiFORҥLWҧLWUӑQJWiFÿӝQJOrQ&7%7/ và ÿҩWQӅQGѭӟLÿi\PyQJ CTBTL
3KҥPYLQJKLrQFӭXFӫDOXұQiQOjNKXYӵF0ӓĈҥL+QJQҵPWURQJ%Ӈ 1DP&{Q6ѫQWKXӝFWKӅPOөFÿӏDphía Nam 9LӋW1DPWURQJ%LӇQĈ{QJYӟLFKLӅXVkXQѭӟFELӇQOj NKRҧQJ110m
/XұQiQÿѭӧFWKӵFKLӋQYӟLPөFÿtFK[iFÿӏQKFiFGҥQJWҧLWUӑQJWiFÿӝQJOrQ&7%7/7ӯÿy[iFÿӏQKӭQJ[ӱFӫDÿҩWQӅQGѭӟLÿi\PyQJCTBTL QKҵPWӕLѭXKyD GLӋQWtFK ÿi\PyQJWUӑQJOѭӧQJFҫQWKLӃWFӫDNKӕLÿӃGҵQFNJQJQKѭFiFÿLӅXNLӋQәQÿӏQKNKiFFӫDF{QJWUuQKGҥQJQj\
1KҵP[iFÿӏQKÿҫ\ÿӫYjFKXҭQ[iFFiFGҥQJYjJLiWUӏFӫDWҧLWUӑQJWiFÿӝQJOrQ&7%7/ FNJQJQKѭӭQJ[ӱFӫDÿҩWQӅQGѭӟLÿi\PyQJ OXұQiQQj\VӁWұSWUXQJSKkQWtFKYjEҧR YӋFiFOXұQÿLӇPQKѭVDX
/X̵QÿL͋P /êWKX\ӃWKӗLTX\YjTX\KRҥFKWKӵFQJKLӋPOjFҫQWKLӃWiSGөQJ ÿӇ [iFÿӏQKFiFWK{QJVӕFӫDWҧLWUӑQJNKLWK{QJVӕWҧLWUӑQJ FyWtQKFKҩWQJүX nhiên và SKӭFWҥS
/X̵QÿL͋P : Tích phân Elliptic ³ xtg ( ax ) dx ÿѭӧFOҩ\NKLYjFKӍNKL phân tích KjPGѭӟLGҩXWtFKSKkQUDFKXӛLVDXÿyOҩ\WtFKSKkQWK{QJTXDFiFKjPFKӭD KӋVӕB n FӫDBernoulli
/X̵QÿL͋P ;iFÿӏQKFKX\ӇQYӏFӫDÿҩWQӅQGѭӟLÿi\PyQJ&7%TL theo mô hình bài toán Flamand WURQJ/êWKX\ӃWÿjQKӗL YjYӁPLӅQÿӗQJPӭFFӫDFKX\ӇQ YӏOjPӝWFiFKWtQKPӟL, ÿiQJWLQFұ\
5 1KLӋPYөFӫDOXұQiQ ĈӇÿiSӭQJÿѭӧFFiF\rXFҫXFӫDPӝWOXұQiQWLӃQVƭ FNJQJQKѭÿҧPEҧRÿѭӧFWtQKNKRD KӑFYjWKӵFWLӉQÿӗQJWKӡLÿӫFѫVӣÿӇFKӭQJPLQKFiFOXұQÿLӇPQrXWUrQOXұQiQWKӵF KLӋQFiFQKLӋPYөFKtQKVDX ÿk\:
;iFÿӏQKFiFGҥQJWҧLWUӑQJ, WәKӧSWҧLWUӑQJYjTXDQÿLӇPWtQKWRiQWҧLWUӑQJWiF ÿӝQJOrQ&7%7/
Tính toán FKX\ӇQYӏFӫD ÿҩWQӅQGѭӟLÿi\PyQJ&7%7/WKHRTXDQÿLӇPFӫD&ѫ KӑFYұWUҳQELӃQGҥQJYjOêWKX\ӃWÿjQKӗL.ӃWTXҧWtQKWRiQÿѭӧFWKӇKLӋQEҵQJ PLӅQÿӗQJPӭFFӫDFKX\ӇQYӏFӫDÿҩWQӅQ
;k\GӵQJFiFSKҫQPӅPQKҵPWӵÿӝQJKyDWtQKWRiQÿӕLYӟLFiFQӝLGXQJÿmQJKLrQFӭX
1JKLrQFӭXFҩXWU~F ÿӏDFKҩWYjFiFÿһFÿLӇPYӅP{LWUѭӡQJELӇQNKXYӵF0ӓ ĈҥL+QJWURQJ%Ӈ1DP&{Q6ѫQ ÈSGөQJOêWKX\ӃWKӗLTX\YjTX\KRҥFKWKӵFQJKLӋPÿӇSKkQWtFKYj[iFÿӏQK FiFWK{QJVӕWҧLWUӑQJFyWtQKFKҩWQJүXQKLrQSKӭFWҥS
/ұSSKҫQPӅP[iFÿӏQKWK{QJVӕVyQJ ELӇQWKHRSKѭѫQJSKiS+jPKӗLTX\
9ұQGөQJOêWKX\ӃWVyQJ$LU\YjFiFELӃQÿәLWRiQKӑFÿӇ[k\GӵQJEjLWRiQ[iF ÿӏQKiSOӵFVyQJFӵFÿҥLOrQWUөWKҷQJÿӭQJNtFKWKѭӟFOӟQFyWLӃWGLӋQWKD\ÿәL WURQJYQJQѭӟFVkX
/ұSSKҫQPӅPWtQKWRiQiSOӵFVyQJFӵFÿҥLOrQWUөWKҷQJÿӭQJFyWLӃWGLӋQWKD\ ÿәLWURQJYQJQѭӟFVkX
;k\GӵQJEjLWRiQtính FKX\ӇQYӏ FӫDÿҩWQӅQGѭӟLÿi\PyQJ&7%7/ trong bán NK{QJJLDQY{KҥQ theo &ѫKӑFYұWUҳQELӃQGҥQJYjOêWKX\ӃWÿjQKӗL
/ұSSKҫQPӅP WtQKWRiQYjYӁPLӅQÿӗQJPӭFFӫDFKX\ӇQYӏÿҩWQӅQGѭӟLÿi\ móng CTBTL WURQJEiQNK{QJJLDQY{KҥQWKHRFѫKӑFYұWUҳQELӃQGҥQJYjOê WKX\ӃWÿjQKӗL
7 3KѭѫQJSKiSQJKLrQFӭXFӫDOXұQiQ
/XұQiQÿѭӧFWKӵFKLӋQEҵQJFiFSKѭѫQJSKiSVDX
3KѭѫQJSKiSSKkQWtFKYjKӋWKӕQJ7uPKLӇXSKkQWtFKÿiQKJLiFiFWKjQKWӵX NKRDKӑFKLӋQWҥLYjӭQJGөQJÿӇJLҧLTX\ӃWFiFYҩQÿӅÿһWUDWURQJOXұQiQ
3KѭѫQJSKiSWKӕQJNrxác sXҩW7KLӃWOұSFiFPӕLTXDQKӋWRiQKӑFÿӗQJWKӡLVӱ GөQJOêWKX\ӃWKӗLTX\YjTX\KRҥFKWKӵFQJKLӋPÿӇJLҧLTX\ӃWEjLWRiQ [iFÿӏQK WK{QJVӕWҧLWUӑQJWӯQKLӅXELӃQVӕQJүXQKLrQ
3KѭѫQJSKiSELӃQÿәLWRiQKӑF6ӱGөQJF{QJWKӭFSimpson WKD\FKRFiFKOҩ\WtFKSKkQWK{QJWKѭӡQJYӕQWuPQJKLӋPNKiSKӭFWҥSÿӇJLҧLTX\ӃWEjLWRiQWUө
18 WKҷQJÿӭQJFyWLӃWGLӋQWKD\ÿәLÈSGөQJOê WKX\ӃWÿjQKӗLYjFѫKӑFYұWUҳQELӃQ GҥQJÿӇJLҧLTX\ӃWEjLWRiQELӃQGҥQJFӫDQӅQÿҩWWURQJEiQNK{QJJLDQY{KҥQ Dùng các phép bLӃQÿәLWRiQ cѫ ÿӇFKX\ӇQcác OӵFvӅ tҧi SKkQEӕÿӅXq, tӯ ÿy dӉ dàng tính biӃn dҥng
3KѭѫQJSKiSmô hình/ұSFiFSKҫQPӅP Pi\WtQKQKҵPWӵÿӝQJKóa tính toán FiFQӝLGXQJÿmQJKLrQFӭXEҵQJQJôn ngӳ Visual Basic
8 1KӳQJÿLӇPPӟLYӅPһWNKRDKӑFFӫDOXұQiQ
/êWKX\ӃWKӗLTX\YjTX\KRҥFKWKӵFQJKLӋPÿѭӧFÿѭDYjRÿӇ[iFÿӏQKFiFWK{QJ VӕFӫDWҧLWUӑQJÿӕLYӟLFiFORҥLWҧLWURQJ FyWtQKFKҩWQJүXQKLrQSKӭFWҥS
/êWKX\ӃWVyQJ$LU\YjF{QJWKӭF0RULVRQÿѭӧFiSGөQJÿӇWtQKWRiQVѫEӝiS OӵFVyQJWiFÿӝQJOrQWUөFӫD&7%7/FyWLӃWGLӋQWKD\ÿәLWURQJYQJQѭӟFVkX
9LӋF tính tích phân ³ xtg ( ax ) dx ÿmÿѭӧFOҩ\EҵQJFiFKSKkQWtFKKjPGѭӟLGҩX WtFKSKkQUDFKXӛLVDXÿyOҩ\WtFKSKkQWK{QJTXDFiFKjPFKӭDKӋVӕB n FӫD
Bernoulli/ӡLJLҧLQj\FNJQJOjOӡLJLҧLOҫQÿҫXWLrQÿѭӧFÿӅFұS WURQJ/êWKX\ӃW ÿjQKӗL &iFKWtQKQj\FӫDWiFJLҧFyêQJKƭDNKRDKӑFYӅOêWKX\ӃWYjWKӵFWLӉQ khi tính QӅQmóng CTBTL
&iFKYӁPLӅQÿӗQJPӭFFӫDFKX\ӇQYӏFӫDÿҩWQӅQ FNJQJOjPӝWÿLӇPPӟL, giúp WDGӉKuQKGXQJWtQKFKҩWELӃQGҥQJFӫDÿҩWGѭӟLPyQJ CTBTL
9 éQJKƭDNKRDKӑFYjWKӵFWLӉQFӫDOXұQiQ
/XұQiQÿmQJKLrQFӭXFѫEҧQ YӅQӅQPyQJFӫD&7%7/NtFKWKѭӟFOӟQӣNKX YӵF%Ӈ1DP&{Q6ѫQQyLULrQJYj%LӇQĈ{QJQyLFKXQJ
/ҫQÿҫXWLrQQJKLrQFӭXYӅÿһFÿLӇP P{LWUѭӡQJWҧLWUӑQJYjWәKӧSWҧLWUӑQJWiF ÿӝQJOrQ&7%7/WҥL%LӇQĈ{QJ
%jLWRiQYӅӭQJ[ӱFӫDÿҩWQӅQGѭӟLÿi\PyQJF{QJWUuQKELӇQWUӑQJOӵFWKHR TXDQÿLӇPFӫD&ѫKӑFYұWUҳQELӃQGҥQJYj/êWKX\ӃWÿjQKӗLOҫQÿҫXÿѭӧFÿӅ FұSYjFKRNӃWTXҧÿiQJWLQFұ\
&yWKӇiSGөQJFiFNӃWTXҧQJKLrQFӭXFӫDOXұQiQFKRYLӋFWtQKWRiQWKLӃWNӃYj [k\GӵQJFiFF{QJWUuQKNKDLWKiFGҫXNKtYjWjLQJX\rQWKLrQQKLrQGѭӟLÿi\ ELӇQ
&yWKӇiSGөQJFiFNӃWTXҧQJKLrQFӭXFӫDOXұQiQÿӇWKLӃWNӃ[k\GӵQJFiFQKj GjQWUrQELӇQWUөÿӥÿqQELӇQWUөÿӥWXӕFELQSKRQJÿLӋQ ĈһFELӋWFyWKӇWLӃSWөFQJKLrQFӭXÿӇWKLӃWNӃYj[k\GӵQJF{QJWUuQKӨFKuP GѭӟLELӇQSKөFYөF{QJWiFSKzQJWKӫ4XӕFSKzQJӣ%LӇQĈ{QJ
/XұQiQÿѭӧF[k\GӵQJWUrQFѫVӣNӃWTXҧFӫDFiFQJKLrQFӭXWӯWUѭӟFÿӃQQD\FNJQJ QKѭQKӳQJNLQKQJKLӋPU~WUDWӯTXiWUuQKQJKLrQFӭXJLҧQJGҥ\YjFKX\ӇQJLDRF{QJ QJKӋFӫDEҧQWKkQWiFJLҧ/XұQiQFNJQJÿѭӧFWKDPNKҧRYjSKkQWtFKWӯQKLӅXNӃt TXҧ ÿmF{QJEӕYjWjLOLӋXOѭXWUӳFӫDQKLӅXFiQKkQWұSWKӇFiFQKjNKRDKӑFWURQJYjQJRjL QѭӟF
/XұQiQJӗPFy4 FKѭѫQJGjy 119 trang YjWUDQJSKөOөF, 14 EҧQJELӇXYj51 hình ҧQKÿѭӧFKRjQWKjQKWҥL%ӝP{QĈӏD.ƭ WKXұWNKRD.ƭ WKXұWÿӏDFKҩWYj'ҫXNKtWUѭӡQJ ÿҥLKӑF%iFKNKRD± ĈҥLKӑF4XӕFJLD7KjQKSKӕ+ӗ&Kt0LQKGѭӟLVӵKѭӟQJGүQFӫD1KjJLiRѭXW~3*676ĈұX9ăQ 1JӑYj3*6761JX\ӉQ+ӳX%ҧQJ
1.1.1 &{QJWUuQKELӇQWUӑQJOӵFWUrQWKӃJLӟL
7ӯQăPWUrQWKӃJLӟLEҳWÿҫX[XҩWKLӋQ các &{QJWUuQKELӇQWUӑQJOӵFCTBTL) bê tông FӕWWKpSWKHRQJX\rQOêPyQJQ{QJJLӳәQÿӏQKӣYӏWUt[k\GӵQJEҵQJWUӑQJOѭӧQJ EҧQWKkQYjWҧLWUӑQJF{QJQJKӋWKѭӡQJÿѭӧFJӑLOjF{QJWUuQKELӇQWUӑQJOӵFErW{QJYӟL F{QJGөQJch FiFGjQNKRDQGҫXNKtQJRjLNKѫL
Công trình biӇn trӑng lӵFÿҫu tiên là dàn khoan dҫXNKtÿѭӧc thiӃt kӃ bӣi công ty DORIS (Pháp), xây dӵng WӯWKiQJQăPWҥi mӓ Ekofish (BiӇn Bҳc) YjÿѭDYjRNKDLWKiF QăPӣ ÿӝ sâu 71m Dàn khoan trӑng lӵFÿҫu tiên này là bӇ chӭa dҫu cӫa Ekofisk 'jQNKRDQÿѭӧc sӱ dөQJÿӇ hӛ trӧ các thiӃt bӏ khoan và sҧn xuҩt thiӃt bӏ chӃ biӃn, bao gӗPPi\QpQOѭXWUӳ, và thiӃt bӏ EѫP 1JD\VDXÿyGҥng kӃt cҩu này phát triӇn và trӣ thành mӝt trong nhӳQJѭXWKӃ ÿӕi vӟi các F{QJWUuQKQJRjLNKѫL (ÿmFyKѫQ12 công trình WUӑQJOӵFErW{QJÿѭӧFÿѭDYjRKRҥWÿӝQJngay WURQJJLDLÿRҥQQj\ Ĉk\Oj PӝWGjQ NKRDQQKLӅXWUө (1, KRһF WUө) OjPWKQJFKӭDGҫXÿӃQFKLӅXFDRFӫDGjQYӟL ÿѭӡQJNtQKmóng OӟQ lên ÿӃQ 150m YjÿӝVkXOҳSÿһWÿӃQ-350m so YӟLPһWQѭӟFELӇQ
1KӳQJF{QJWUuQKÿӗsӝWURQJOƭQKYӵFGҫXNKtEҵQJNӃWFҩXErW{QJFӕWWKpSWUӑQJOӵF WұSWUXQJFKӫ\ӃXWҥLNKXYӵF%LӇQ%ҳFYӟL4 GjQNKRDQÿmÿѭӧF[k\GӵQJ&{QJWUuQK ÿѭӧF[k\GӵQJJҫQÿk\QKҩWOjGjQ*%60RQRWRZHUWҥLPӓ+HEURQ± &DQDGDFӫDFông ty Exxon Mobil Properties ÿѭӧF[k\GӵQJYjRQăP
9ӅYұWOLӋX[k\GӵQJYjNӃWFҩXFNJQJSKRQJSK~YjÿDGҥQJW\WKHRFKLӅXVkXQѭӟFELӇQYjÿһFÿLӇPVӱGөQJ7X\QKLrQWDWKѭӡQJWKҩ\&7%7/ӣGҥQJNӃWFҩXWKpSWUӑQJOӵFYjNӃWFҩXErW{QJFӕWWKpSWUӑQJOӵF7UѭӡQJKӧSÿһFELӋWFyWKӇNӃWKӧSJLӳDErW{QJFӕWWKpSYjWKpSQKѭSKҫQÿӃPyQJEҵQJErW{QJFӕWWKpSFzQSKҫQWUөÿӥEҵQJWKpSYjSKҫQVjQFQJYӟLWKѭӧQJWҫQJEҵQJWKpS
%ҧQJ1+Ӳ1*DÀN KHOAN Bấ TễNG 75Ӑ1*/Ӵ&ĈưĈѬӦ&;ặ4]
/ӏFKVӱSKiWWULӇQEӇ1DP&{Q6ѫQJҳQOLӅQYӟLTXiWUuQKWiFKJLmQ%LӇQĈ{QJYjFyWKӇ ÿѭӧFFKLDOjPJLDLÿRҥQFKtQK*LDLÿRҥQWUѭӟFWiFKJLmQ3DOHRFHQ- EocHQJLDLÿRҥQ ÿӗQJWiFKJLmQ2OLJRFHQ± Miocen VӟPJLDLÿRҥQVDXWiFKJLmQ0LRFHQJLӳD- ĈӋ7ӭHình 1.14 và 1.15)
35 Hình 1.14 0һWFҳWÿӏDFKҩQPLQKKRҥFiFGҥQJEү\FҩXWU~F [4]
Hình 1.15 0һWFҳWÿӏDFKҩQPLQKKRҥFiFFKXNǤSKiWWULӇQÿӏDFKҩW [4]
*LDLÿRҥQWUѭӟFWҥRULIW- Paleocen - Eocen
36 7URQJJLDLÿRҥQQj\FKӃÿӝNLӃQWҥRWRjQNKXYӵFQKuQFKXQJEuQKәQ[ҧ\UDTXi WUuQKEjRPzQYjVDQEҵQJÿӏDKuQKFәWX\QKLrQPӝWÿ{LQѫLYүQFyWKӇWӗQWҥL QKӳQJWUNJQJJLӳDQ~LӢSKҫQWUXQJWkPFӫDEӇFy NKҧQăQJWӗQWҥLFiFWKjQKWҥR PRODVYөQQ~LOӱDYjFiFÿiQ~LOӱDFyWXәL(RFHQ QKѭÿmEҳWJһSWUrQOөFÿӏD
*LDLÿRҥQÿӗQJWҥRULIW- Oligocen - 0LRFHQVӟP
'RÿһFÿLӇPFҩXWU~FÿӏDFKҩWSKӭFWҥSQrQFzQWӗQWҥLQKӳQJTXDQÿLӇPNKiF QKDXYӅJLDLÿRҥQWҥRULIWFӫDEӇ1DP&{Q6ѫQĈk\OjJLDLÿRҥQFKtQKWKjQKWҥR EӇJҳQOLӅQYӟLWiFKJLmQ%LӇQĈ{QJ6ӵPӣUӝQJFӫD%LӇQĈ{QJYӅSKtDĈ{QJ FQJYӟLKRҥWÿӝQJWtFKFӵFFӫDKӋWKӕQJÿӭWJm\Ĉ{QJ%ҳF - 7k\1DPÿmOjP [XҩWKLӋQÿӏDKjR 7UXQJWkPFӫDEӇNpRGjLWKHRKѭӟQJĈ{QJ%ҳF- Tây Nam và GӑF WKHRFiF ÿӭWJm\ Qj\ÿm Fy SKXQWUjR KRҥWÿӝQJ&iF WKjQKWҥRWUҫPWtFK Oligocen - 0LRFHQVӟPJӗPFiFWUҫPWtFKYөQFKӫ\ӃXWKjQKWҥRWURQJFiFP{L WUѭӡQJÿҫPKӗYjÿӟLQѭӟFOӧYHQEӡEUDFNLVKOLWWRUDO]RQHYӟLFiFWұSVpWNӃW EӝW NӃW Gj\ [HQ NӁ FiW NӃW KҥW PӏQ Yj P{L WUѭӡQJ ÿӗQJ EҵQJ FKkX WKә WKҩS ORZHUGHOWDSODLQJӗPFiWNӃWKҥWPӏQEӝWNӃWVpWNӃWYӟLFiFOӟSWKDQPӓQJ 3KDNLӃQWҥR0LRFHQJLӳDÿmFKҩPGӭWJLDLÿRҥQQj\YjOjPWKD\ÿәLEuQKÿӗFҩX WU~FFӫDEӇ
7URQJJLDLÿRҥQQj\QKuQFKXQJFKӃÿӝNLӃQWҥRNKiEuQKәQKѫQVRYӟLJLDLÿRҥQ WUѭӟF6RQJӣPӝWVӕQѫLYүQTXDQViWWKҩ\VӵQkQJOrQEjRPzQYjFҳWFөWPӝW VӕFҩXWU~FGѭѫQJÿmFy9ӅFѫEҧQFKӃÿӝNLӃQWҥRRҵQY}QJYjO~QFKuPQKLӋW FNJQJQKѭFiFSKDELӇQWLӃQYjQJұSOөWNKӕQJFKӃWUrQGLӋQWtFKWRjQEӇ+ҫXKӃW FiFÿӭWJm\ÿӅXNӃWWK~FKRҥWÿӝQJYjRFXӕL0LRFHQ7URQJ3OLRFHQ- ĈӋ7ӭSKiW WULӇQWKӅPOөFÿӏDEuQKÿӗFҩXWU~FNK{QJFzQPDQJWtQKNӃWKӯDFiFJLDL ÿRҥQ WUѭӟFUDQKJLӟLJLӳDFiFWUNJQJJҫQQKѭÿѭӧFÿӗQJQKҩWWUrQWRjQNKXYӵF>4]
1.2.4 ĈӏDWҫQJWUҫPWtFKYjP{LWUѭӡQJ
1ҵPWUrQPyQJNK{QJÿӗQJQKҩWOjOӟSSKӫWUҫPWtFK3DOHRJHQ- ĈӋ7ӭFyFKLӅXGj\ELӃQÿәLWӯKjQJWUăPÿӃQKjQJQJKuQPpW
+ӋWҫQJ&DXFyWKӇ[HPWѭѫQJÿѭѫQJ YӟLKӋWҫQJ%DZDK.HUDVYj*DEXV$JLS, WKXӝFEӇĈ{QJ1DWXQDӣSKtD1DP FӫDEӇ1DP&{Q6ѫQ
+ӋWҫQJ&DXYҳQJPһWWUrQSKҫQOӟQFiFÿӟLQkQJ1kQJ0mQJ&ҫXQkQJ'ӯD SKҫQ7k\O{SKҫQOӟQO{-YjPӝWVӕGLӋQWtFKӣSKҫQ7k\7k\ 1DPFӫDEӇ7UҫPWtFKFӫDKӋWҫQJ&DXEDRJӗPFKӫ\ӃXFiFOӟSFiWNӃWFyPjX [iP[HQFiFOӟSVpWEӝWNӃWPjXQkX&iWNӃWWKҥFKDQKKҥWWK{ÿӃQPӏQÿӝOӵD FKӑQNpP[LPăQJVpWFDUERQDW&KLӅXGj\WUXQJEuQKNKRҧQJP0һWFҳWKӋ WҫQJ&DXFyWKӇFyQѫLÿӃQKjQJQJKuQPpWFKLDOjPSKҫQ
3KҫQGѭӟLJӗPFiWNӃWKҥWPӏQÿӃQWK{ÿ{LNKLUҩWWK{KRһFVҥQNӃWFiWNӃW FKӭDFXӝLYjFXӝLNӃWPjX[iP[iPSKӟWQkXQkXÿӓFKӭD FiFPҧQKYөQ WKDQKRһFFiFOӟSNҽSWKDQӢPӝWVӕJLӃQJNKRDQJһSFiFOӟSÿiSKXQ WUjRDQGHVLWEDVDOWGLDEDVQҵP[HQNӁ*.-PH-1X)
3KҫQJLӳDJӗPFKӫ\ӃXOjFiFWKjQKSKҫQKҥWPӏQFKLӃPѭXWKӃJӗPFiF WұSVpWNӃWSKkQOӟSGj\ÿӃQGҥQJNKӕLPjX[iPVҭP[iPÿHQ[HQNӁtW EӝWNӃWÿ{LNKLSKӟWQkXÿӓKRһFWtPÿӓNKiJLjXYұWFKҩWKӳXFѫYjY{L [HQNӁFiFOӟSVpWNӃWFKӭDWKDQ
3KҫQWUrQJӗPFiWNӃWKҥWQKӓÿӃQYӯDPjX[iPWUR[iPViQJÿ{LFKӛFy FKӭDJODXFRQLWWUQJOӛ[HQNӁEӝWNӃWVpWNӃWPjX[im tro, xám xanh KRһFQkXÿӓ
6pWNӃWFӫDKӋWҫQJ&DXSKkQOӟSGj\KRһFGҥQJNKӕLUҳQFKҳFӢSKҫQGѭӟLWҥL QKӳQJYQJEӏFK{QYLVkXNKRiQJYұWVpW EӏELӃQÿәLNKiPҥQKPӝWSKҫQEӏNӃW tinh 6pWNӃWKӋWҫQJQj\WKѭӡQJFKӭDYұWFKҩWKӳXFѫFDRQrQÿѭӧFFRLOjWҫQJ VLQKGҫXNKtÿӗQJWKӡLQKLӅXQѫLFNJQJÿѭӧFFRLOjWҫQJFKҳQWӕW
&iWNӃWFӫDKӋWҫQJQj\FyKҥWPӏQÿӃQQKӓӣSKҫQWUrQKRһFKҥWYӯDÿӃQWK{ ÿ{LNKLUҩWWK{ӣSKҫQGѭӟLÿӝOӵDFKӑQNpPÿӃQWUXQJEuQKKҥWEiQWUzQFҥQK
38 ÿӃQJyFFҥQKĈ{LNKLWURQJFiWNӃWFyFKӭDPҧQKYөQÿiELӃQFKҩWYjMacma FӫDFiFWKjQKWҥRPyQJWUѭӟFĈӋ7DP
&iFWұSFiWNӃWFӫDKӋWҫQJ&DXFyNKҧQăQJFKӭDWUXQJEuQK7X\QKLrQFKҩW OѭӧQJÿiFKӭDELӃQÿәLPҥQKWKHRFKLӅXVkXYjWKHRNKXYӵFWXǤWKXӝFP{LWUѭӡQJ WUҫPWtFKYjPӭFÿӝELӃQÿәLWKӭVLQK ĈһFÿLӇPWUҫPWtFKQrXWUrQFKӭQJWӓKӋWҫQJ&DXÿѭӧFKuQKWKjQKWURQJJLDL ÿRҥQÿҫXWҥREӇӢWKӡLNǤÿҫXSKiWWULӇQWUҫPWtFKWѭӟQJOөFÿӏDEDRJӗPFiFWKjQKWҥRONJWtFK[HQWUҫPWtFKÿҫPKӗYNJQJYӏQKQKLӅXNKXYӵF[ҧ\ UDFiFKRҥW ÿӝQJQ~LOӱDWҥRQrQPӝWVӕOӟSSKXQWUjRDQGHVLWEDVDOWGLDEDVYjWXI9jRJLDL ÿRҥQVDXWUҫPOҳQJFiFWKjQKWҥRFy[XKѭӟQJPӏQGҫQÿ{LQѫLFiWNӃWFyFKӭDJODXFRQLWYjKyDWKҥFKELӇQ7UҫPWtFKÿѭӧFOҳQJÿӑQJWURQJP{LWUѭӡQJWDPJLiF cKkXYNJQJYӏQKÿӃQELӇQYHQEӡ(hình 1.16)
39 Hình 1.16 &ӝWÿӏDWҫQJWәQJKӧSEӇ1DP&{Q6ѫQ [4]
40 +ӋWҫQJ&DXSKӫNK{QJFKӍQKKӧS WUrQPyQJWUѭӟFĈӋ7DPYjÿѭӧFÿӏQKWXәLOj 2OLJRFHQ GӵD YjR EjR Wӱ SKҩQ KRD ÿӟLFlorschuetza Tribolata Yj SKө ÿӟL
ĈһFÿLӇPP{LWUѭӡQJYjFiFGҥQJWҧLWUӑQJWiFÿӝQJ
1.3.1 &iFWuQKKXӕQJÿӇ[iFÿӏQKWҧLWUӑQJWiFÿӝQJOrQ&7%7/
7ҧLWUӑQJWiFÿӝQJOrQF{QJWUuQKWURQJJLDLÿRҥQFKӃWҥR
7ҧLWUӑQJWiFÿӝQJOrQF{QJWUuQKWURQJJLDLÿRҥQYұQFKX\ӇQ
7ҧLWUӑQJWiFÿӝQJOrQF{QJWUuQKWURQJJLDLÿRҥQGӵQJOҳS
7ҧL WUӑQJ WiF ÿӝQJ OrQ F{QJ WUuQK WURQJ JLDL ÿRҥQ F{QJ WUuQK KRҥW ÿӝQJ EuQK WKѭӡQJ
7ҧLWUӑQJWiFÿӝQJOrQF{QJWUuQKWURQJWUҥQJWKiLEmRFӵFÿҥL
7ҧLWUӑQJWiFÿӝQJOrQF{QJWUuQKWURQJJLDLÿRҥQSKөFKӗLKRһFWKiRGӥJLDLÿRҥQ Qj\EDRJӗPYLӋFVӱDFKӳDSKөFKӗLOҥLKRһFWKiRGӥGLFKX\ӇQNӃWFҩX
7ҧLWUӑQJ VyQJYjGzQJFKҧ\ÿѭӧF[iFÿӏQKYӟLFiFPӵFQѭӟFWtQKWRiQEDRJӗP PӵFQѭӟFFDRWKLӃWNӃYjPӵFQѭӟFWKҩSWKLӃWNӃ>3]
1.3.2 &iFORҥLWҧLWUӑQJWiFÿӝQJOrQ&7%7/
&iFORҥLWҧLWUӑQJWiFÿӝQJOrQF{QJWUuQKELӇQWUӑQJOӵFFyWKӇNӇÿӃQQKѭVDX7ҧLWUӑQJ WKѭӡQJ [X\rQKRҥWWҧLWҧLWUӑQJGRP{LWUѭӡQJWҧLWUӑQJGRFiFVӵFӕQJүXQKLrQWҧL WUӑQJGRFKӃWҥRWҧLWUӑQJGRYұQFKX\ӇQYjOҳSÿһWWҧLWUӑQJÿӝQJÿҩWô
7ҧLWUӑQJWKѭӡQJ[X\rQOjWҧLWUӑQJNK{QJWKD\ÿәLWKHRFiFJLDLÿRҥQYұQKjQK7ҧL WUӑQJWKѭӡQJ[X\rQEDRJӗP
7UӑQJOѭӧQJFӫDFiFEӝSKұQNӃWFҩXF{QJWUuQKWURQJNK{QJNKt
7UӑQJOѭӧQJFӫDFiFWKLӃWEӏYjNӃWFҩXSKөJҳQFӕÿӏQKWUrQF{QJWUuQK ÈSOӵFWKӫ\WƭQKWiFGөQJOrQNӃWFҩXGѭӟLPһWQѭӟFWƭQKYjOӵFÿҭ\QәL>3]
/jWҧLWUӑQJOLrQTXDQÿӃQVӵYұQKjQKYjVӱGөQJEuQKWKѭӡQJFӫDF{QJWUuQKFyWKӇ WKD\ÿәLWURQJWӯQJGҥQJYұQKjQKKRһFWӯGҥQJYұQKjQKQj\VDQJGҥQJYұQKjQKNKiF +RҥWWҧLEDRJӗP
7UӑQJOѭӧQJFӫDWKLӃWEӏVҧQ[XҩWFyWKӇEәVXQJKRһFOҩ\EӟWUDNKӓLF{QJWUuQK
7UӑQJOѭӧQJFӫDQJѭӡLӣPi\ED\WUӵFWKăQJFiFWKLӃWEӏSKөFYөFXӝFVӕQJWUrQ F{QJWUuQKFiFWKLӃWEӏFӭXKӝFiFWKLӃWEӏOһQFiFWKLӃWEӏSKөFYөF{QJFӝQJFy WKӇEәVXQJKRһFÿHPUDNKӓLF{QJWUuQK
7UӑQJOѭӧQJFӫDFiFQKX\ӃXSKҭP FiFORҥLGXQJGӏFKFKҩWOӓQJWURQJFiFEӇ FKӭDYjFiFORҥLYұWOLӋXNKiF
&iFOӵFWiFÿӝQJOrQF{QJWUuQKGRYұQKjQKQKѭNKRDQYұQKjQKFӫDYұWOLӋX QHRWjXPi\ED\WUӵFWKăQJ
&iFOӵFWiFÿӝQJOrQF{QJWUuQKGRVӱGөQJFҫQFҭX>3@ô
/jWҧLWUӑQJGRJLyVyQJGzQJFKҧ\WKӫ\WULӅXYjFiFWiFÿӝQJP{LWUѭӡQJNKiFJk\UD 7ҧLWUӑQJP{LWUѭӡQJFNJQJEDRJӗPFҧWKD\ÿәLiSOӵFWKӫ\WƭQKYjOӵFÿҭ\QәLWiFÿӝQJ OrQF{QJWUuQKGRFyWKD\ÿәLÿӝFDRPһWQѭӟFGRVyQJYjWKӫ\WULӅX1ӃXkhông có QKӳQJJLҧWKLӃWKӧSOêYӅÿLӅXNLӋQULrQJFӫDYQJ[k\GӵQJF{QJWUuQKWҧLWUӑQJP{L WUѭӡQJÿѭӧFJLҧWKLӃWWiFGөQJWKHRPӑLSKѭѫQJEҩWNu>3]
7ҧLWUӑQJVӵFӕVLQKUDGRYa ÿұSFӫDWjXGRFiFYұWUѫLôJk\UDFiFELӃQGҥQJFөFEӝ VX\\ӃXWәQJWKӇ>3]
1.3.2.5 7̫LWU͕QJÿ͡QJÿ̭W ҦQKKѭӣQJFӫDÿӝQJÿҩWUҩWFҫQÿѭӧF[HP[pWWURQJJLDLÿRҥQNKDLWKiFFӫDF{QJWUuQK ӣNKXYӵFFyÿӝQJÿҩW7URQJQKӳQJWUѭӡQJKӧSULrQJҧQKKѭӣQJFӫDÿӝQJÿҩWÿӕLYӟL
46 F{QJWUuQKWURQJJLDLÿRҥQFKӃWҥRWUrQEӡFNJQJÿѭӧF[HP[pW7URQJJLDLÿRҥQNKDLWKiF F{QJWUuQKKDLPӭFÿӝQJÿҩWÿѭӧF[HP[pWOjPӭFWKLӃWNӃYjPӭFQJRҥLOӋ
0ӭFWKLӃWNӃQyÿѭӧFÿӏQKQJKƭDQKѭÿӝQJÿҩWGӳGӝLQKҩWFyWKӇ[ҧ\UDӣQѫL [k\GӵQJWURQJJLDLÿRҥQWKLӃWNӃ
0ӭFQJRҥL OӋWѭѫQJӭQJYӟLÿӝQJÿҩWFӵFÿҥL[HP[pWQKѭFiFWiFÿӝQJGRVӵFӕ QJүXQKLrQ>3]
7ҩWFҧFiFORҥLWҧLWUӑQJNK{QJFQJPӝWO~FWiFÿӝQJOrQF{QJWUuQK.KLWtQKWRiQWKLӃW NӃFҫQWәKӧSFiFWҧLWUӑQJÿӇWuPUDWUҥQJWKiLQӝLOӵFӭQJVXҩWELӃQGҥQJEҩWOӧLQKҩW FKRF{QJWUuQKWURQJFiFÿLӅXNLӋQQKѭVDX ĈLӅXNLӋQNKDLWKiF; ĈLӅXNLӋQEmRFӵFÿҥL; ĈLӅXNLӋQÿӝQJÿҩW;
;HPEҧQJWәKӧSWҧLWUӑQJÿӇWtQKWRiQ&7%7/WURQJEҧQJ1.3 GѭӟLÿk\
%ҧQJ1.1 %ҧQJWәKӧSWҧLWUӑQJÿӇWtQKWRiQWKLӃWNӃCTBTL
&ѫEҧQ TH1 TH2 TH3 TH ĈһFELӋW
7ҧLWUӑQJWKѭӡQJ[X\rQ x x x x x x
7ҧLWUӑQJJLyÿLӅXNLӋQWKѭӡQJ x x x x
7ҧLWUӑQJVyQJÿLӅXNLӋQWKѭӡQJ x x x x
7ҧLWUӑQJGzQJFKҧ\ÿLӅX NLӋQWKѭӡQJ x x x x
7ҧLWUӑQJJLyÿLӅXNLӋQFӵFKҥQ x
7ҧLWUӑQJVyQJÿLӅXNLӋQFӵFKҥQ x
7ҧLWUӑQJGzQJFKҧ\ÿLӅXNLӋQ FӵFKҥQ x
7ҧLWUӑQJÿӝQJÿҩW x ĈӕLYӟLFiFWҧLWUӑQJFyKѭӟQJWҧLWUӑQJGzQJFKҧ\WҧLWUӑQJVyQJWҧLWUӑQJJLyWҧL WUӑQJNӇFiFKRҥWÿӝQJFyKѭӟQJFӫDFҫQFҭXYLӋFWәKӧSWҧLWUӑQJÿѭӧFWKӵFKLӋQOҫQ OѭӧWWKHRFiFKѭӟQJFӫDWҧLWUӑQJ
1.3.4 ;iFÿӏQKFiFWҧLWUӑQJFKtQKWiFÿӝQJOrQ&7%7/
6yQJYjJLyOjKDLWҧLWUӑQJP{LWUѭӡQJFKtQK[HP[pWWURQJYLӋFWKLӃWNӃFiFCTBTL
&iFWҧLP{LWUѭӡQJWKLӃWNӃWKѭӡQJGӵDYjRÿLӅXNLӋQP{LWUѭӡQJYӟLFKXNǤQăP YjWKӡLJLDQWXәLWKӑWKLӃWNӃCTBTL OjNKRҧQJ50 - 7QăP0ӝWFiFKWLӃSFұQEiQWKӵF QJKLӋPÿѭӧFVӱGөQJÿӇÿiQKJLiWҧLWUӑQJVyQJWUrQFiFcông trình QJRjLNKѫL&iFGүQ [XҩWFӫDPӝWOêWKX\ӃWFyQJXӗQJӕFWLQFұ\Qj\ÿѭӧFNӃWKӧSYӟLWKӵFQJKLӋPYӅKӋVӕ NpRYjOӵFTXiQWtQKÿӇGӵÿRiQFiFFѫQVyQJWUrQ FiFWKjQKSKҫQFҩXWU~FWѭѫQJÿӕLVR YӟLYӏWUtFӫDVyQJ&yKDLSKѭѫQJSKiSÿiQKJLiFiFWҧLWUӑQJVyQJCTBTL QJRjLNKѫL ÿyOj3KѭѫQJSKiSVyQJWKLӃWNӃYj3KѭѫQJSKiSSKkQWtFKTXDQJSKә, [5]
/ӵFJLyWiFGөQJOrQF{QJWUuQKELӇQ WUӑQJOӵFQJRjLNKѫLOjPPӝt hàm vӟi ba thông sӕ chính là vұn tӕFKѭӟng tác dөQJYjFiFÿһFWtQKNKtÿӝng hӑc tác dөng lên bӅ mһt kӃt cҩu, [6]
Lӵc song song vӟLKѭӟQJJLyÿѭӧF[iFÿӏnh bӣi công thӭc: ܨ ൌͳ ʹܥ ௗ ߩܸ ଶ ܣ (1.1)
48 /ӵFQj\FNJQJÿѭӧFJӑi là lӵFNpRYjQyFy[XKѭӟng xô nghiêng công trình và gây tác dөng chính tҥi thӡLÿLӇPÿҧo chiӅu
Lӵc vuông góc vӟLKѭӟQJJLyÿѭӧF[iFÿӏnh bӣi công thӭc: ܨ ൌͳ ʹܥ ߩܸ ଶ ܣ (1.2)
/ӵFYX{QJJyFYӟLKѭӟQJJLyFy[XKѭӟQJQkQJF{QJWUuQK
$ 'L QWtFKYX{QJJyFYͣLY̵QW͙FJLy
9ұQWӕFJLyNK{QJOLrQWөFEӣLQKӳQJOӵFFҳWYӟLEӅPһWFӫDWUiLÿҩWQyOjVӕNK{QJӣ EӅPһWYjWăQJWKHRFҩSVӕQKkQYӟLPӝWWӕFÿӝ tӕLÿDJLӟi hҥQÿѭӧc gӑi là gió biӃQÿәi Trên mһWQѭӟc tӕFÿӝ gió ӣ ÿӝ FDRYjÿѭӧFÿҥi diӋn bӣLFiFÿӏnh luұWKjPPNJPӝt phҫn bҧy ܸ ൌ ܸ ൬ ܼ ܴ݂݁൰ భ ళ
9UHI 7͙Fÿ͡JLyͧÿ͡FDRIWPÿ͡FDRWK{QJWK˱ͥQJÿ˱ͫFGQJ
= &KL͉XFDRPRQJPX͙QE̹QJÿ˯QY͓feet (ft)
&iFKLӋXӭQJJLyWUrQWҩWFҧFiFEӝSKұQFӫDNӃWFҩXWUrQPһWQѭӟFSKҧLÿѭӧFWtQKWRiQ+DLORҥLWӕFÿӝJLyWKѭӡQJÿѭӧFWtQKWRiQ
49 7ӕFÿӝJLyÿӅXÿѭӧFÿӏQKQJKƭDQKѭOjWӕFÿӝJLyWUXQJEuQKWURQJNKRҧQJWKӡL JLDQPӝWSK~W
7ӕFÿӝJLyJLұWÿѭӧFÿӏQKQJKƭDQKѭOjWӕFÿӝJLyWUXQJEuQKWURQJPӝWNKRҧQJ WKӡLJLDQJLk\+ӋVӕJLyJLұWOjKӋVӕQKkQÿyÿѭӧFQKkQYӟLWӕFÿӝJLyÿӅXÿӇ FyÿѭӧFWӕFÿӝJLyJLұWKRһFQKDQKQKҩW- Yұn tӕc theo dһm HӋ sӕ gió giұt trung bình (F10), ӣ ÿӝ cao 30ft nҵm trong khoҧng 1,35-1,45
Mӝt công thӭFWKѭӡQJÿѭӧc chҩp nhұn cho viӋc tính toán các áp lӵc gió: ܨ ൌ ܭܸ ଶ ܥ ௌ ܣ (1.4)
A 'LӋQWtFKѭӟFOѭӧQJ
+ӋVӕKuQKGҥQJÿLӇQKuQKFKRPӑLJyFÿӝFӫDSKѭѫQJSKiSWLӃSFұQJLyFyWKӇOj:
&ҩXNLӋQGҥQJGҫPÿӭQJCs = 1,5
Hai WKjQKSKҫQFKtQKFӫDOӵFGzQJFKҧ\OjGzQJWULӅXYjJLyOjPÿәLKѭӟQJGzQJFKҧ\'zQJFKҧ\GRJLyӣEӅPһWFӫDQѭӟFWƭQKÿѭӧF[HPOjFӫDWӕFÿӝJLy ÿӅXӣ 30ft (10m) WUrQPӵFQѭӟFWƭQK9ұQWӕFKLӋQWҥLQrQÿѭӧFEәVXQJWKHRNLӇXYHFWRUYӟLYұQWӕFVyQJ WUѭӟFNKLWtQKWRiQOӵFNpR%ӣLYuOӵFNpRSKөWKXӝFYjREuQKSKѭѫQJYұQWӕFQJDQJYjGzQJFKҧ\JLҧPQKҽWKHRÿӝVkXPӝWGzQJFKҧ\
50 WѭѫQJÿӕLQKӓFyWKӇWăQJOӵFFҧQÿiQJNӇ7URQJWKLӃWNӃFKLӅXFDRVyQJWӕLÿD ÿ{LNKLÿѭӧFNӇÿӃQJLiWUӏJLDWăQJWӯãÿӇWtQKFiFWiFÿӝQJFӫDGzQJFKҧ\ YjOӵFGzQJFKҧ\VӁÿѭӧFEӓTXD, [6]
1KѭYұ\OӵFGzQJFKҧ\ÿDQJÿѭӧFWtQKWRiQWӯWUѭӟFÿӃQQD\OjVӵNӇÿӃQJLiWUӏ JLDWăQJFӫDWҧLWUӑQJVyQJPjEӓTXDOӵFWiFÿӝQJ FӫDGzQJFKҧ\
7ҥLFiF NKXYӵFFyWX\ӃWKӋNӃWFҩXQrQÿѭӧFWKLӃWNӃÿӇFKӏXWҩWFҧFiFWҧLWUӑQJ WƭQKYjWҧLWUӑQJWX\ӃWSKӫ7URQJWҩWFҧFiFQѫLFyEăQJWU{LFyWKӇWӗQWҥLQKӳQJ WҧQJEăQJFyÿӝGj\UҩWOӟQYjYұQWӕFPjEăQJFyWKӇYDFKҥPFiFNӃWFҩXWKu FҫQÿѭӧFWtQKWRiQ[iFÿӏQK9ӟLPҧQJKRһFGҧLEăQJWUҥQJWKiLWӟLKҥQFӫDEăQJ FNJQJÿѭӧF[iFÿӏQKӢPӝWVӕQѫLWX\ӃWFyWKӇWtFKONJ\WUrQNӃWFҩXYjFiFNӃW FҩXWU~FSKtDWUrQ3KҧLFyJLӟLKҥQÿӕLYӟLFiFWiFÿӝQJFӫDVӵWtFKONJ\Qj\WKHR WtQKәQÿӏQKYjӭQJVXҩWWURQJNӃWFҩX&iFOӵFEәVXQJÿӇNKiQJOҥLJLyGRWtFK WөEăQJQKѭYұ\FNJQJÿѭӧFEDRJӗPWURQJJLӟLKҥQQj\, [6]
9ӟLÿһFÿLӇPÿӏDOêFӫD%LӇQĈ{QJQyLFKXQJFNJQJQKѭ7UNJQJ1DP&{Q6ѫQQyL ULrQJWKuÿLӅXNLӋQEăQJWX\ӃWWiFÿӝQJOrQF{QJWUuQKELӇQOjNK{QJWӗQWҥL9u Yұ\WҧLWUӑQJEăQJWX\ӃWÿѭӧFORҥLEӓWURQJWKLӃWNӃÿӕLYӟLNKXYӵFÿDQJ[pWFӫD QJKLrQFӭXQj\
7UѭӡQJKӧSF{QJWUuQKOjPӝWNKXYӵFFyOӏFKVӱÿӝQJÿҩWNӃWFҩXFҫQÿѭӧFWKLӃW NӃÿӇFKӕQJOҥLFiFOӵFQJDQJOӵFGӑFYjQKӳQJPRPHQWSKiWVLQKWӯFiFKRҥW ÿӝQJÿӏDFKҩQ&iFWK{QJWLQÿѭӧFVӱGөQJÿӇWKLӃWOұSPӝWWUұQÿӝQJÿҩWWKLӃWNӃ WKѭӡQJÿѭӧFOҩ\WӯGӳOLӋXJKLQKұQWUұQÿӝQJÿҩWWUѭӟFWҥLKRһFJҫQYӏWUtF{QJ WUuQKQӃXGӳOLӋXÿyÿӅXFyVҹQ
%ӣLYuFyUҩWtWWUҥPJKLQKұQVRYӟLVӕOѭӧQJFiFNKXYӵFFyÿӝQJÿҩWNKҧQăQJFKӑQYӏWUtFyPӝWP{WҧOӏFKVӱÿҫ\ÿӫYӅFiFKRҥWÿӝQJÿӏDFKҩQOjUҩWQKӓ7URQJWUѭӡQJKӧSQKѭYұ\ÿLӅXNLӋQYӏWUtF{QJWUuQKQrQÿѭӧFVRViQKYӟLÿLӅXNLӋQFӫDPӝWYӏWUtFyÿӏDFKҩWYjNLӃQWҥRWѭѫQJWӵQKDXPjFyVӕOLӋX, [6].
1.4 7әQJTXDQYӅӭQJ[ӱFӫDÿҩWQӅQGѭӟLÿi\PyQJCTBTL
1.4.1 Tình hình QJKLrQFӭXYӅӭQJ[ӱFӫDÿҩWQӅQGѭӟLÿi\PyQJF{QJWUuQKELӇQ
Công WUuQKELӇQWUӑQJOӵFÿѭӧF[k\GӵQJÿҫXWLrQWUrQWKӃJLӟi WӯQăP3 YjYүQÿDQJ ÿѭӧFQJKLrQFӭX WKLӃWNӃYj[k\GӵQJ FKRÿӃQQJj\QD\7X\QKLrQORҥLKuQKNӃWFҩX Qj\FKѭDÿѭӧFSKiWWULӇQUӝQJUmLFiFF{QJWUuQKÿm[k\GӵQJWKHRQJX\rQOêWUӑQJOӵF EҵQJNӃWFҩXErW{QJFӕWWKpSFKӫ\ӃXOjFiFGjQNKRDQGҫXNKtÿѭӧF[ây GӵQJFKӫ\ӃX ӣNKXYӵF%LӇQ%ҳF Canada, Na Uyô
3+ặ17ậ&+7+é1*6Ӕ6ẽ1*%Ҵ1*/ộ7+8<ӂ7+Ӗ,48< VÀ QU<+2Ҥ&+7+Ӵ&1*+,ӊ0
ĈӅ[XҩWPӟLFiFK[iFÿӏQKWK{QJVӕVyQJELӇQ
2.2.1 &iFK[iFÿӏQKFiFWK{QJVӕVyQJELӇQ
Trong OXұQiQWiFJLҧÿӅ[XҩW VӱGөQJ PӝWSKѭѫQJSKiS PӟLÿӇ[iFÿӏQKFiFWK{QJVӕ VyQJSKөFYөFKRTXiWUuQKWtQKWRiQYjWKLӃWNӃ+jPKӗLTX\ÿѭӧFVӱGөQJÿӇSKkQWtFK Yj[ӱOêFiFVӕOLӋXTXDQWUҳFÿѭӧFWӯFiFWK{QJVӕVyQJQKѭFKXNǤPDKѭӟQJJLy WҫQVXҩWYY
+ӗLTXy WKѭӡQJÿѭӧF[ӃSYjRORҥLEjLWRiQWӕLѭX vì FK~QJWDQӛOӵFÿӇWuPNLӃPPӝW JLҧLSKiSÿӇFKRVDLVӕYjSKҫQGѭ là WӕWQKҩW3KkQWtFKKӗLTX\ÿѭӧFVӱGөQJWKjQK F{QJWURQJQKLӅXOƭQKYӵFYjFK~QJW{LPXӕQÿӅ[XҩWQKѭPӝWFiFKPӟLÿӇJLҧLTX\ӃWbài toán sóng WKӵF
.ӃWTXҧWtQKWRiQFiFWK{QJVӕVyQJEҵQJSKѭѫQJSKiSWKӕQJNrWUrQFiFJLiWUӏTXDQWUҳFVyQJWKӵFWURQJPӝWNKRҧQJWKӡLJLDQKӳXKҥQWҥLYQJELӇQÿһWF{QJWUuQK ÿmFKRJLiWUӏ ÿiQJWLQFұ\KѫQYuFyFѫVӣWRiQKӑFU}UjQJKѫQWK{QJTXDOêWKX\ӃWKӗLTX\YjTX\KRҥFKWKӵFQJKLӋP
2.2.2 3KѭѫQJSKiS[iFÿӏQKWҧLWUӑQJVyQJFӵFÿҥLWiFÿӝQJOrQWUө&7%7/Fy
WLӃWGLӋQWKD\ÿәLWURQJYQJQѭӟFVkX
7ҧLWUӑQJVyQJWiFGөQJOrQ&7%7/ÿѭӧFOҩ\WURQJÿLӅXNLӋQEҩWOӧLQKҩW.KLÿyWUөÿӥ FӫDF{QJWUuQKOjEӝSKұQJiQKFKӏXFiFWiFÿӝQJFӫDVyQJELӇQ&KRÿӃQQD\YLӋFQJKLrQ FӭXYjWtQKWRiQWҧLWUӑQJVyQJWiFÿӝQJOrQWUөÿӥYүQFzQQKLӅX\ӃXWӕSKӭFWҥSFҫQ SKҧLWLӃSWөFÿѭӧF[HP[pW
9LӋF[iFÿӏQKWҧLWUӑQJVyQJWiFÿӝQJOrQWUөÿӥFKӫ\ӃXGӵDYjRSKѭѫQJWUuQK0RULVRQ 7X\Yұ\SKѭѫQJWUuQK0RULVRQFKӍJLӟLKҥQEӣLWҧLWUӑQJVyQJWiFGөQJOrQWUөWKҷQJ ÿӭQJFyWLӃWGLӋQNK{QJÿәLWUzQKRһFWLӃWGLӋQEҩWNuĈLӅXQj\NK{QJxác WKӵFYӟLÿһF ÿLӇPFҩXWҥRFӫDF{QJWUuQKYuWKӃWURQJWtQKWRiQQJѭӡLWDWKѭӡQJÿѭDYjRFiFKӋVӕ ÿLӅXFKӍQKWKLrQYӅDQWRjQ, [20]
/XұQiQ Qj\WiFJLҧÿӅ[XҩWiSGөQJSKѭѫQJWUuQK0RULVRQYjWKӵFKLӋQFiFELӃQÿәL WRiQKӑFÿӇWtQKWRiQWҧLWUӑQJVyQJWiFÿӝQJOrQWUөÿӥNtFKWKѭӟFOӟQFyWLӃWGLӋQWKD\ ÿәLӣYQJQѭӟFVku
*LҧWKLӃWYүQGQJVyQJ$LU\YjF{QJWKӭF0RULVRQYu
&KLӅXVkXQѭӟFQJKLrQFӭXKP ĈӝGjLVyQJO # 120 m WKѭӡQJOӟQKѫQÿѭӡQJNtQKG, [20]
*LҧLWtFKKӗLTX\OjP{QWRiQKӑFYҥQQăQJÿѭӧFVӱGөQJÿӇQJKLrQFӭXFiFPӕLTXDQ KӋFyWtQKWKӕQJNr6ӵ[XҩWKLӋQFӫDJLҧLWtFKKӗLTX\OLrQTXDQÿӃQYLӋFQJKLrQFӭX FiFPӕLSKөWKXӝFWURQJVLQKKӑFNKLSKiWWULӇQQyÿmOLrQTXDQÿӃQFiFEjLWRiQYӅWKt QJKLӋP
*LҧLWtFKKӗLTX\OjFѫVӣOêWKX\ӃWFKRSKpSSKkQWtFKQKkQWӕYjÿһWQӅQPyQJFKREjLWRiQTX\KRҥFKWKӵFQJKLӋP
59 3KѭѫQJSKiSSKkQWtFKKӗLTX\WҥRÿLӅXNLӋQÿӇ[iFÿӏQKFiFP{WҧWRiQKӑFFӫDFiFÿӕL WѭӧQJFyÿһFWUѭQJFKѭDELӃWWUrQFѫVӣTXDQWUҳFFiFJLiWUӏYjRYjra (hình 2.1)
Hình 2ĈӕLWѭӧQJSKLWX\ӃQQKLӅXFKLӅX [21]
XpWPӝWÿӕLWѭӧQJFyÿҫXYjRx 1 , x 2 , x 3 ôx S YjPӝWÿҫXUDyĈӕLWѭӧQJQj\FKӏXVӵQKLӉX ORҥQz QjRÿy(hình 2.1)9LӃWÿӕLWѭӧQJEӣLPӝWÿһFWUѭQJSKLWX\ӃQFKѭDELӃW y= f(x 1 , x 2 , x 3 ô[ S , z) (2.1)
1KkQWӕJk\QKLӉXORҥQz WKD\ÿәLOLrQWөF9ӟLQKӳQJJLiWUӏ[iFÿӏQKFӫDÿҫXYjRx 1 , x 2 , x 3 ô[ S FyWKӇQKұQÿѭӧFFiFJLiWUӏFӫDÿҫXUDy
7DTXDQWkPPӕLSKөWKXӝF2FӫDÿҫXUDy YjÿҫXYjRx 1 , x 2 , x 3 ô[ S, WKѭӡQJQyNK{QJ SKҧLOjPӕLSKөWKXӝFKjPVӕPjOjPӕLSKөWKXӝFEӏJk\QKLӉXORҥQ
.KiLQLӋPYӅPӕLSKөWKXӝFKjPVӕÿѭӧFGQJWURQJQKLӅXOƭQKYӵFNKRDKӑFYjNƭ WKXұWNKiFQKDXWURQJÿyFyQJjQKJLҧLWtFKWRiQKӑF7KӵFFKҩWPӕLSKөWKXӝFKjPVӕ Qj\OjVӵWKD\ÿәLFӫDy khi x WKD\ÿәLFyWtQKÿѫQWUӏ(hình (2.2)
/ҫQOѭӧWPӛLJLiWUӏFyWKӇFӫDx Qy[iFÿӏQKPӝWJLiWUӏy WӯÿyYLӃWÿѭӧF
7URQJSKpSSKkQWtFKWKӕQJNrWKuNKiLQLӋPy=f(x) Qj\OjUҩWKҽSYuWKӃQJѭӡLWDÿѭD YjRNKiLQLӋPWәQJTXiWKѫQÿyOjPӕLSKөWKXӝFEӏJk\QKLӉXORҥQ7KӵFUDNKLTXDQ WUҳFKjPVӕ2OjtWJһSEӣLWDNK{QJORҥLEӓÿѭӧFQKkQWӕҧQKKѭӣQJFyWtQKQJүX QKLrQ9ӅQJX\rQWҳFWURQJWKӵFWӃFiFPӕLSKөWKXӝFTXDQWUҳFÿѭӧFOjPӕLSKөWKXӝF EӏQKLӉXORҥQGRÿyFiFPӕLSKөWKXӝFQj\OjÿDWUӏ(hình 2.3)
7KӵFFKҩWPӕLSKөWKXӝFEӏQKLӉXORҥQOjPӕLSKөWKXӝFFӫDPӝWELӃQQJүXQKLrQy và ELӃQQJүXQKLrQxQyOjPӕLSKөWKXӝFÿѫQWUӏFӫDVӵSKkQSKӕL[iFVXҩWWӯELӃQQJүX nhiên y SKөWKXӝFYjRJLiWUӏx ÿmFKӑQWK{QJTXDELӃQQJүXQKLrQx
Hình 20ӕLSKөWKXӝFQKLӉXORҥQ [21]
&yWKӇQyLELӃQQJүXQKLrQY OjSKөWKXӝFQKLӉXORҥQYjRELӃQQJүXQKLrQX QӃXQKѭ
SKpSSKkQSKӕLF FӫDELӃQQJүXQKLrQY YӟLÿLӅXNLӋQX=x OjPӝWKjPFӫDJLiWUӏy FӫD ELӃQQJүu nhiên Y PjFӫDFҧJLiWUӏx
.KL[iFÿӏQKFiFKP{WҧWRiQKӑFFӫDÿӕLWѭӧQJQJѭӡLWDTXDQWkPQKҩWÿӃQJLiWUӏNu YӑQJFӫDELӃQQJүXQKLrQY YӟLÿLӅXNLӋQX=x QӃXJLiWUӏNuYӑQJFyÿLӅXNLӋQFӫDELӃQ QJүXQKLrQY OjPӝWKjPFӫDx:
O~FQj\WDQyLFyVӵWѭѫQJTXDQJLӳDELӃQQJүXQKLrQY và X
61 KLQKұQӣÿLӇPnELӃWFiFJLiWUӏÿҫXYjRx 1 , x 2 , x 3 ô[ S YjWѭѫQJӭQJYӟLQyOjJLiWUӏ ÿҫXUDy FӫDÿӕLWѭӧQJÿmWUuQKEj\(hình 2.1)O~FÿyWDQKyPVӕOLӋXQj\WKjQKEҧQJ
7URQJÿyx ns OjJLiWUӏÿҫXYjRFӫDx s WҥLÿLӇPn, y N OjJLiWUӏÿҫXUDFӫDy WҥLÿLӇPn 0өFÿtFKOjSKҧL[iFÿӏQKÿһFWUѭQJWKD\WKӃFyGҥQJÿmFKӑQW\ê
Trong (2.6) cú kFiFKӋVӕFKѭDELӃWb k (k ô.1-1) ĈӕLYӟLPӝWVӕÿLӇPÿmFKRn thì hàm (2QKұQPӝWJLiWUӏ
, ệ n f(x n 1 x n 2 x nS b 0 b 1 b K y (2.7) ĈһFWUѭQJ2[ҩS[ӍÿһFWUѭQJ2PjÿһFWUѭQJ2FKѭDELӃWYuQKLӉXORҥQzӢ FiFWKӡLÿLӇPWLӃSWKHRn (Q ô1) WKѭӡQJFNJQJOjGRFKѭDELӃWÿѭӧFGҥQJFyWtQK FKҩWSKLWX\ӃQFӫDÿӕLWѭӧQJ2.1) ĈһFWUѭQJ2[ҩS[ӍÿһFWUѭQJ2WKѭӡQJÿѭӧFJӑLOjP{KuQKWRiQKӑFFӫDÿӕL WѭӧQJYӁWUrQ(hình 2.1) ĈӇ[iFÿӏQKWӕLѭXFiFKӋVӕb 0, b 1, b k FӫDP{KuQKWRiQKӑF2WDFKӑQP{KuQK Qj\GѭӟLGҥQJKjP
S 1 , 2 , ; ệ 1 ,ệ 2 , ệ , (2.8) Qy[iFÿӏQKNKRҧQJFiFKJLӳDWұSKӧSFiFJLiWUӏÿҫXUD^ y 1 ,y 2 , y N `FӫDÿӕLWѭӧQJ2.1) YjÿҫXUD^ yệ 1 ,yệ 2 , yệ N ` FӫDP{KuQK2.7)
62 7URQJWKӵFWӃFKӍWLrXÿѫQJLҧQQKҩWOjNKRҧQJFiFK(XFOLG trong không gian n FKLӅXPj QyGүQÿӃQEjLWRiQ[iFÿӏQKPӝWQKyPWӕLѭXFiFKӋVӕb 0,b 1, b k FӫDP{KuQK2.7), WӯÿyÿѭDÿӃQEjLWRiQOjPFӵFWLӇXELӇXWKӭF
7ӯOkXWURQJ WRiQKӑFQyÿѭӧFJӑLOjEjLWRiQEuQKSKѭѫQJFӵFWLӇXÿmÿѭӧFÿѭDYjR WRiQKӑFEӣL/DJUDQJe EjLWRiQQj\OjQӅQPyQJFӫDSKpSSKkQWtFKKӗLTX\
6DXNKLFӵFWLӇXKyDF{QJWKӭF2ÿӕLYӟLFiFJLiWUӏWKDPVӕb 0, b 1, b k WD[iFÿӏQK FiFWKDPVӕÿmÿѭӧFWӕLѭXTXDb 0, b 1, b kEҵQJFiFKÿyWDQKұQÿѭӧFKjP
&{QJWKӭF2WKѭӡQJÿѭӧFJӑLOjKjPKӗLTX\
7DFRLKjPVӕKӗLTX\OjWX\ӃQWtQKÿӕLYӟLFiFWKDPVӕFKѭDELӃW
YӟLKjPf k (x) và k=1, 2ôK ÿmELӃWYjQyOjÿӝFOұSWX\ӃQWtQK7UѭӡQJKӧSWәQJTXiW
7UѭӟFWLrQWDQJKLrQFӭXQKѭOjPӝWWUѭӡQJKӧSULrQJ[iFÿӏQKFiFKӋVӕFӫDKjPKӗi TX\WX\ӃQWtQKQKLӅXFKLӅX
1KұQÿӕLWѭӧQJQJKLrQFӭXFyGҥQJQKѭKuQK2WҥLWKӡLÿLӇPN ÿm[iFÿӏQKÿѭӧFFiF JLiWUӏÿҫXYjRS: x 1 , x 2 , x 3 ô[ S YjWѭѫQJӭQJYӟLQyOjÿҫXUDy WDQKyPFiFNӃWTXҧWKjQK PӝWEҧQJTXDQWUҳFÿҫXYjRÿҫXUD2.5) Ta tìm hjPKӗLTX\QKLӅXFKLӅXGѭӟLGҥQJ
&iFWK{QJVӕFKѭDELӃWFӫDKjPKӗLTX\2QKѭWKӃQjRÿӇ[ҩS[ӍWӕWQKҩWELӃQy YӟL êQJKƭDOjWәQJFiFEuQKSKѭѫQJÿӝOӋFKÿӕLYӟLFiFVӕOLӋXTXDQWUҳF4FyJLiWUӏQKӓ QKҩW ệ > , , ; , , @ 2 min
%jLWRiQFKӑQFiFKӋVӕWӕLѭXKjPKӗLTX\WKHRFiFKYLӃWPDWUұQQKѭVDX:
Các NӃWTXҧÿmFKRWKjQKEҧQJTXDQWUҳFFӫDÿҫXYjRÿҫXUD2GѭӟLGҥQJPDWUұQ ĈҫXYjROj; ằ ằ ằ ẳ º ô ô ô ơ ê
7URQJÿyÿmÿѭDYjRFiFSKҫQWӱFӝWFӕÿӏQK
9ӟLPөFÿtFKP{WҧGѭӟLGҥQJPDWUұQPjFyFKӭDFҧKӋVӕb 07DYLӃWFiFNӃWTXҧTXDQ WUҳFÿҫXYjRFӫDÿӕLWѭӧQJYjÿҫXUDFӫDP{KuQKGѭӟLGҥQJFiFYHFWѫUDFӫDP{KuQK WӭFOjFiFJLiWUӏFӫDKjPKӗLTX\QKѭVDX
&iFKӋVӕFKѭDELӃWFNJQJÿѭӧFYLӃWGѭӟLGҥQJYpFWѫ ơ b b b S ẳ b 0 , 1 , (2.20)
7ӯÿyFiFJLiWUӏKjPKӗLTX\2.14) VӁFyGҥQJ
&K~êÿӃQ(A+B) T = A T + B T và (AB) T = B T A T %k\JLӡEjLWRiQOjPFӵFWLӇXWәQJFiF EuQKSKѭѫQJÿӝOӋFKFӫD2QKұQGҥQJ min 2
1KұQÿLӅXNLӋQWӕLѭXNKLOҩ\ÿҥRKjPULrQJS R (2YӟLb
9jFKRQyEҵQJ0 WDQKұQÿѭӧFKӋSKѭѫQJWUuQKFKXҭQ y X Xb
7DQJKLrQFӭXÿӕLWѭӧQJ(hình 2.1) ÿѭӧFYLӃWEҵQJKjP [22]: y = f(x 1 ,x 2 ô[ s ,z) (2.26)
7URQJÿyx 1 ,x 2 ô[ s OjKLӋXÿҫXYjRFӫDÿӕLWѭӧQJz OjQKkQWӕJk\QKLӉXORҥQ'ҥQJ
FӫDKjP2FKѭDELӃWJLҧWKLӃWKjPy OjOLrQWөFYjFyPӝWÿLӇPOjFӵFWUӏGX\QKҩW 9үQJLҧWKLӃWKjP2OjSKLWX\ӃQYjWDFyWKӇOҩ\JҫQÿ~QJQy[XQJTXDQKFiFÿLӇP ÿmFKRx 0 1 , x 0 2 ôôô[ 0 s QKӡPӝWKjPKӗLTX\WX\ӃQWtQKGѭӟLGҥQJ
7UѭӟFWLrQOұSNӃKRҥFKWKӵFQJKLӋPÿӇ[iFÿӏQKFiFJLiWUӏÿҫXYjRx n1 , x n2 ô[ ns YͣL n=ô1 FӫDPӝWORҥWWKtQJKLӋP7LӃSWKHRWDOjPFiFWKtQJKLӋPVӁQKұQÿѭӧFFiF
65 JLiWUӏÿҫXUDWѭѫQJӭQJy 1 , y 2 ôô\ n FӫDÿӕLWѭӧQJ7UrQFѫVӣFiFWKtQJKLӋPQj\VӁ QKұQÿѭӧFPӝWEҧQJVӕOLӋXQKѭVDX : áá áá á ạ ã n nS n n
7DWtQKKӋVӕFӫDKjPKӗLTX\b 0 , b 1 ôE s FiFKӋVӕQj\[iFÿӏQKKѭӟQJFӫD*UDGLHQW YjWuPUDÿѭӧFÿLӇPFӵFWUӏWKHRKѭӟQJQj\
.ӃKRҥFKWKӵFQJKLӋPFӫDKDLPӭFGӵDWUrQYLӋFQKұQFiFJLiWUӏÿҫX vào x s WURQJÿy s=1,2 S ӣKDLPӭFx s :
&ӵFWUӏWӯQJSKҫQFy2 2-S WKtQJKLӋP ĈӇQkQJFDRÿӝWLQFұ\WD[pWPӝWYtGөÿѫQJLҧQOұSNӃKRҥFKKDLPӭFÿӇPLQKKӑD SKѭѫQJSKiSWӕLѭXKyD7uPFӵFÿҥLFӫDÿҫXUDFӫDÿӕLWѭӧQJS=3 ÿҥLOѭӧQJYjRQy ÿѭӧFYLӃWEҵQJKjPSKLWX\ӃQ y =f(x 1 , x 2 , x 3 ), (2.30)
WURQJYQJQyÿѭӧFJLӟLKҥQOj ° ¿ ° ắ ẵ d d d d d d
%k\JLӡQJKLrQFӭXWuPFӵFÿҥLFөFEӝ YӟLÿLӇPÿҫXWLrQ[XҩWSKiW
7ҥLOkQFұQÿLӇP2WuPKjPGѭӟLGҥQJ
%ҧQJ2.ӃWTXҧWKtQJKLӋPFӫD%R[D- Wilsona [22]
67 9LӃWFiFNӃWTXҧWKtQJKLӋPGѭӟLGҥQJPDWUұQYjRYjÿҫXUDFӫDÿӕLWѭӧQJy QKѭVDX ằằ ằằ ằằ ằằ ằằ ẳ º ôô ôô ôô ôô ôô ơ ê
X ; ằằ ằằ ằằ ằằ ằằ ẳ º ôô ôô ôô ôô ôô ơ ê
&iFKӋVӕb 0 , b 1 , b 2 , b 3 FӫDP{KuQK2[iFÿӏQKWUrQFѫVӣSKpSSKkQWtFKKӗLTX\ (2.KLQKkQPDWUұQ(X T X) -1 X -1 YӟLYpFWѫy WDQKұQÿѭӧFYpFWѫKӋVӕFӫDKjPKӗL quy là: °° ¿ °° ắ ẵ °° ¯ °° ®
éQJKƭDFӫDKjPKӗLTX\
+jPKӗLTX\ y ÿmÿѭӧF[pWÿҫ\ÿӫFiFQKkQWӕx i ҧQKKѭӣQJÿӃQy ± ÿӕLWѭӧQJÿDQJ [pW9tGөWURQJNLQKWӃ y
OjFKLӅu cao sinh WUѭӣQJFӫDFk\WUӗQJ7URQJWUѭӡQJKӧSÿDQJ[pWOj FKLӅXFDRVyQJELӇQH OjSKөWKXӝF YjRQKkQWӕFKXNǤPDKѭӟQJJLyWҫQVXҩWYY
6DXNKLFyKjPKӗLTX\WDFyWKӇGӉGjQJÿѭDÿҫXYjRx i W\WKHRVӵOӵDFKӑQÿӗQJWKӡL QyWKӇKLӋQÿѭӧFWtQKWUӝLFӫDQKkQWӕQjRÿyWURQJx i ÿӃQy
&өWKӇWURQJWUѭӡQJKӧS Qj\\ӃXWӕPDOjFyҧQKKѭӣQJU}QKҩWÿӃQFKLӅXFDRVyQJ
7URQJOXұQiQWiFJLҧÿӅ[XҩWYjVӱGөQJOêWKX\ӃWKjPKӗLTX\YjTX\KRҥFKWKӵFQJKLӋP ÿӇWtQKWRiQFiFWK{QJVӕWҧLWUӑQJFyWtQKFKҩWQJүXQKLrQYjSKӭFWҥS0ӝWQJKLrQFӭXWKtÿLӇPÿѭӧFWKӵFKLӋQÿyOj[iFÿӏQKFiFWK{QJVӕVyQJELӇQWӯEӝVӕOLӋX
68 TXDQWUҳFSKӭFWҥSQKҵPWtQKWRiQiSOӵFVyQJWiFGөQJOrQF{QJWUuQKÿӇSKөFYөF{QJWiFWKLӃWNӃCTBTL 3KѭѫQJSKiSKjPKӗLTX\ ÿmÿѭӧFӭQJ GөQJKLӋXTXҧWURQJQKLӅX OƭQKYӵF NKL\Ӄu WӕFҫQWәQJKӧSFyQKLӅXFѫVӣÿҫXYjRSKӭFWҥS'RYұ\YLӋF[iFÿӏQKWҧLWUӑQJ PjÿһFELӋWOjWҧLWUӑQJVyQJFҫQWKLӃWSKҧLiSGөQJSKѭѫQJSKiSKjPKӗLTX\
ÈSGөQJSKѭѫQJSKiSKjPKӗLTX\ÿӇWtQKFKLӅXFDRVyQJELӇQ
2.7.1 7әQJKӧSVӕOLӋXNKҧRViW
;HPFKLӅXFDRVyQJH OjKjPYӟLELӃQOjWҫQVXҩWKѭӟQJWKiQJÿmTXDQWUҳFÿѭӧF
%ҧQJ2.2 %ҧQJVӕOLӋXVyQJTXDQWUҳFWҥLNKXYӵFPӓĈҥL+QJSKDVH, [23]
WҫQVXҩW Tháng H (T) +KѭӟQJ H (tháng)
&KLӅXFDRH ÿѭӧFOҩ\WUXQJEuQKFӝWFXӕL+ +7+K˱ͣQJ+WKiQJ
%ҧQJ2.3 %ҧQJFKXNuVyQJTXDQWUҳFWҥLNKXYӵFPӓĈҥL+QJSKDVH, [23]
7tQKFKRWUѭӡQJKӧSÿDQJӣQJX\rQGҥQJVӕOLӋXTXDQWUҳFÿѭӧFYӟLWҫQVXҩWQăP FӝW9uFyҭQQrQSKҧLWKrPSKpSTXDQWUҳFWKӭWӭFFҫQWLӃQKjQK2 S = 8 quan
WUҳFKRһFWKtQJKLӋP%ҧQJWUrQFyWKtQJKLӋPYuWKӃFҫQWKrPWKtQJKLӋPWKӭÿѭӧF Oҩ\EҵQJWKtQJKLӋPWKӭWӯEҧQJWUrQ7ӯÿyFyKDLPDWUұQÿҫ\ÿӫVDX ĈҫXYjROj á á á á á á á á á á á ạ ã ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ © §
Y ĈѭDPDWUұQQj\YjRFKѭѫQJWUuQKWuPKjPWX\ӃQWtQK ǔ E 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 (troQJÿyǔ{ H OjFKLӅXFDRVyQJWKHRELӃQ
7uPÿѭӧFWӯFKѭѫQJWUuQKSKҫQSKөOөF b0=2,75; b1=0,018; b2=0,478; b3=0,103
9ұ\KjPKӗLTX\FyGҥQJWѭӡQJminh là ǔ 2,75 + 0,018x 1 + 0,478x 2 + 0,103x 3
&KӑQÿLӇPT=6 (4.1dTd14,5); KѭӟQJ 3,6dhuongd8,9); tháng = 6 (1dthang d8),
70 Hình 2 ӃWTXҧFKҥ\FKѭѫQJWUuQKWtQKWK{QJVӕVyQJ
&KѭѫQJWUuQKPi\WtQKÿѭӧFLQӣSKҫQSKөOөF 1
2.8 Tính toiQWҧLWUӑQJVyQJWiFGөQJOrQWUөF{QJWUuQKELӇQWUӑQJOӵFFy WLӃWGLӋQWKD\ÿәLWURQJYQJQѭӟFVkX
2.8.1 ĈһFÿLӇPFӫDWҧLWUӑQJVyQJWiFGөQJOrQWUө&7%7/
7ҧLWUӑQJVyQJWiFÿӝQJ OrQ&7%7/ÿѭӧFOҩ\WURQJÿLӅXNLӋQEҩWOӧLQKҩW.KLÿyWUөÿӥ FӫD F{QJ WUuQK OjEӝSKұQ JiQK FKӏXFiF WiF ÿӝQJFӫD VyQJELӇQ &KRÿӃQ QD\ YLӋF QJKLrQFӭXYjWtQKWRiQWҧLWUӑQJVyQJWiFÿӝQJ OrQWUөÿӥYүQFzQQKLӅX\ӃXWӕSKӭFWҥS FҫQSKҧLWLӃSWөFÿѭӧF[HP[pW
9LӋF[iFÿӏQKWҧLWUӑQJVyQJWiFÿӝQJ OrQWUөÿӥFKӫ\ӃXGӵDYjRSKѭѫQJWUuQK0RULVRQ7X\Yұ\SKѭѫQJWUuQK0RULVRQFKӍJLӟL KҥQEӣLWҧLWUӑQJVyQJWiFÿӝQJ OrQWUөWKҷQJ ÿӭQJFyWLӃWGLӋQNK{QJÿәLWUzQKRһFWLӃWGLӋQEҩWNuĈLӅXQj\NK{QJViWWKӵFYӟLÿһF ÿLӇPFҩXWҥRFӫDF{QJWUuQKYuWKӃWURQJWtQKWRiQQJѭӡLWDWKѭӡQJÿѭDYjRFiFKӋVӕ ÿLӅXFKӍQKWKLrQYӅDQWRjQ
2.8.2 7әQJTXDQYӅWuQKKuQK QJKLrQFӭXWҧLWUӑQJVyQJWiFGөQJOrQWUө
&iFQJKLrQFӭXFӫD+DYHORFN (1940), Mac Camy và Fuchs (1954) ÿmÿѭDUDJLҧL pháp ÿiQK giá áp OӵF ÿӝQJ trên PӝW hình WUө tròn WKҷQJ ÿӭQg OӟQ Eӏ sóng WKѭӡQJ [X\rQWiFÿӝQJ>24]
Laird (1955), Priest (1962), Chakrabarti và Tam(1975), Endo và Tosaka (1985),
&KDNUDEDUWLFQJFӝQJVӵ ÿmWLӃQKjQKFiFWKtQJKLӋP YӅ áp OӵFÿӝQJ[XQJ TXDQKWUөWKҷQJÿӭQJ Eӏ sóng WKѭӡQJ [X\rQWiFGөQJYjWUình bày NӃW TXҧ trên PӝW ORҥW các PүX kích WKѭӟFNKiFQKDXFӫD WUө [24]
Hellstorm và Rundgren (1954) ÿR iSOӵF ÿӝQJ[XQJTXDQKPӝW mô hình KuQKWUө FӫD6RHGUD2HODQGV Grund và NӃW OXұQ UҵQJiSOӵF OrQPһW bên là khác nhau theo ÿӝVkXFӫDQѭӟF>24]
Nakamura (1976) ÿm WLӃQ KjQK PӝW QJKLrQ FӭX WKӵF ÿӏD ӣ 7KiL %uQK 'ѭѫQJ và ÿR iS OӵF GR sóng QJүX QKLrQ 0DF Camy Yj Oê WKX\ӃW VyQJ QKLӉX [ҥ WX\ӃQWtQK FӫD)XFKV Fuchs FKRUҵQJFiFJLiWUӏ ÿR QKӓKѫQ ӣSKҫQ sâu YjOӟQ KѫQJҫQPһWQѭӟFWUXQJEuQK6:/ VRYӟL gLiWUӏOêWKX\ӃW [24]
Borgman (1965) ÿӅ QJKӏ PӝW SKѭѫQJ SKiS tính toán PұW ÿӝ TXDQJ SKә FӫD sóng Wӯ PұW ÿӝ TXDQJ SKә FӫD ÿӝ FDR VyQJ EҵQJ FiFK Vӱ GөQJ PӝW KjP FKX\ӇQWLӃS /êWKX\ӃWQj\ ÿѭӧFiSGөQJ ÿӕLYӟLFiFVyQJ JҫQQKѭOjPӝW quang SKә GҧLKҽS>24]
Pierson và Holmes (1965) ÿmQJKLrQFӭXiSOӵF sóng NK{QJÿӅXGӵDWUrQNKiL QLӋP FKXӛLWKӡLJLDQ WҥL các ÿӝVkXNKiFQKDX [24]
+XQWLQJWRQ QJKLrQ FӭX Pӣ UӝQJ Oê WKX\ӃW QKLӉX [ҥ WX\ӃQ tính sóng QJҳQ QJүXQKLrQ và FKRWKҩ\ UҵQJWURQJ WUѭӡQJKӧSFӫD mӝWKuQKWUө OӟQ xuyên WUrQ EӅ PһW , TXDQJ SKә WәQJ OӵF trên WUө có liên quan ÿӇ TXDQJ SKә FKLӅX cao sóng WK{QJTXDPӝW hàm FKӭFQăQJ [24]
5DPDQYj6DPEKX9HQNDWD5DRÿmiSGөQJSKѭѫQJSKiSTXDQJSKәÿӇWҥRUDiSOӵFFӫDVyQJOrQWUөWKҷQJÿӭQJWURQJSKzQJWKtQJKLӋP7X\QKLrQFiF
72 WUѭӡQJVyQJÿѭӧFÿӅFұSFXӕLFQJÿѭӧFWҥRUDEӣLJLyWKәLWUrQEӅPһWQѭӟF [24]
7URQJNKLQKӳQJQӛOӵFÿiQJNӇÿmÿѭӧFGjQKFKRQJKLrQFӭXYӟLFiFWҧLWUӑQJ WiFGөQJOrQWUөWKҷQJÿӭQJQJKLrQFӭXYӅVӵSKkQEӕӭQJVXҩWVyQJEDRJӗPiS OӵFÿӝQJ[XQJTXDQKWUөWKҷQJÿӭQJÿһFELӋWOjGRVyQJJk\UDWKuNӃWTXҧÿҥW ÿѭӧFOjFzQUҩWKҥQFKӃ ÈSOӵFVyQJWiFÿӝQJOrQWUөWUzQWKҷQJÿӭQJFyWLӃWGLӋQWKD\ÿәLWURQJQѭӟFVkX tWÿѭӧFQJKLrQFӭXFKRÿӃQQD\
9LӋF[k\GӵQJ&7%7/ÿmYjÿDQJÿѭӧFPӝWVӕTXӕFJLDWUrQWKӃJLӟLiSGөQJ WURQJÿyQJѭӡLWDWKѭӡQJVӱGөQJFiF7LrXFKXҭQTXӕFJLDULrQJĈӗQJWKӡLFiF QKjWKLӃWNӃYjFKӃWҥRKҫXQKѭÿӅXFyFiFKӋWKӕQJWLrXFKXҭQWKLӃWNӃFӫDULrQJ KӑYjtWÿѭӧFF{QJEӕUӝQJUmL
7URQJQJKLrQFӭXQj\FK~QJW{LÿDQJWtQKWƭQKKӑFFKR&7%7/7ӯYLӋFWәQJ KӧSFiFQJKLrQFӭXOLrQTXDQFKRWKҩ\SKѭѫQJWUuQK0RULVRQYүQOjSKѭѫQJWUuQK FKӫÿҥRÿӇWtQKWRiQWҧLWUӑQJVyQJWiFÿӝQJOrQWUөÿӥFӫD&7%7/7X\QKLrQ F{QJWKӭFQj\ OҥLEӏKҥQFKӃEӣLWUөFyNtFKWKѭӟFOӟQÿһWWURQJYQJQѭӟFVkX PjÿһFELӋWOjÿӕLYӟLWUөFyWLӃWGLӋQWKD\ÿәLWKѭӡQJÿѭӧFWKLӃWNӃOjPWUөÿӥ cho các CTBTL
/XұQiQÿӅ[XҩWiSGөQJSKѭѫQJWUuQK0RULVRQYjWKӵFKLӋQFiFELӃQÿәLWRiQ KӑFÿӇWtQKWRiQWҧLWUӑQJVyQJWiFÿӝQJOrQWUөÿӥNtFKWKѭӟFOӟQFyWLӃWGLӋQWKD\ ÿәLӣYQJQѭӟFVkX
*LҧWKLӃWYүQGQJVyQJ$LU\YjF{QJWKӭF0RULVRQYu
+ &KLӅXVkXQѭӟFQJKLrQFӭXKP
+ ĈӝGjLVyQJO#120mWKѭӡQJOӟQKѫQÿѭӡQJNtQKG
7ҧLWUӑQJVyQJWiFÿӝQJ OrQWUөWKҷQJÿӭQJNK{QJFKX\ӇQÿӝQJÿѭӧF0RULVRQYjPӝWVӕ WiFJLҧNKiFQJKLrQFӭX.êKLӋXf OjWҧLWUӑQJVyQJSKkQEӕWKHRSKѭѫQJQJDQJx tác ÿӝQJOrQPӝWÿѫQYӏFKLӅXGjLFӝWFyÿѭӡQJNtQKD (hình 2.5), theo Morison là:
7URQJÿyU PұWÿӝQѭӟFCvt, Cqt FiFKӋVӕFҧQYұQWӕFYjTXiQWtQKv x , a x YұQ WӕFYjJLDWӕFQҵPQJDQJFӫDSKҫQWӱQѭӟFÿDQJ[pWGRVyQJJk\UDÿѭӧFWtQKWKHROê WKX\ӃWVyQJÿmFKӑQWUѭӟF
Hình 2.5 7ҧLWUӑQJVyQJWiFÿӝQJOrQWUөWKҷQJÿӭQJ, [18]
6ӕKҥQJÿҫXFӫD2.37ÿѭӧFJӑLOjWKjQKSKҫQFҧQYұQWӕFVӕKҥQJWKӭKDLOjWKjQK SKҫQFҧQTXiQWtQKC vt ÿѭӧFQKұQWURQJSKҥPYLy1,0; C qt QKұQWӯy2,0
'RYұQWӕFYjJLDWӕFFӫDFiFSKҫQWӱFKҩWOӓQJQyLFKXQJOjJLҧPWKHRÿӝVkXQrQVӵ SKkQEӕFӫDWҧLWUӑQJf GӑFWKHRFӝWFyGҥQJQKѭhình 2.5)
+ӧSOӵFFӫDWҧLSKkQEӕf OrQWUөWURQJÿRҥQWӯÿi\ELӇQ\ ÿӃQÿӝFDR\QjRÿy EҵQg:
YjPRPHQFӫDWҧLWUӑQJQj\ÿӕLYӟLÿi\ELӇQy = 0) là:
&iQKWD\ÿzQFӫDKӧSOӵFÿӕLYӟLÿi\ELӇQWuPÿѭӧFVDXNKLÿm[iFÿӏQKM và F theo F{QJWKӭF
9ӟLQJKLrQFӭXQj\YQJQѭӟFVkXWDGQJF{QJWKӭF Ȧ 2 =gk (2.41)
Có k WtQKYұQWӕFWKHRF{QJWKӭF
2 kx t kh sh ky ch v x ZH Z
2 t kh kx sh ky ch a x Z H Z
7URQJÿyWXQJÿӝ\FӫDSKҫQWӱQѭӟFOҩ\WKHRF{QJWKӭFVDX
2.8.5.1 &iFWK{QJV͙FKͯ\͇XFͯDP{KuQK Ĉ97P
&KLӅXVkXQѭӟFWKLӃWNӃ: 110m
&KLӅXFDRSKҫQErQGѭӟLFӫDVjQF{QJWiFP ĈѭӡQJNtQKWUөSKҫQWLӃWGLӋQNK{QJÿәLP ĈѭӡQJNtQKWUөSKҫQWLӃWGLӋQWKD\ÿәL7ӯP± 15m
&KLӅXFDRSKҫQWUөWLӃWGLӋQNK{QJÿәLP
&KLӅXGj\SKҫQWUөWLӃWGLӋQNK{QJÿәL,5m
&KLӅXFDRSKҫQWUөWLӃWGLӋQWKD\ÿәLP
&KLӅXGj\SKҫQWUөWLӃWGLӋQWKD\ÿәL,0m ĈѭӡQJNtQKFӫDWKQJFKuPFDLVon): 24m
&KLӅXGj\FӫDEҧQQҳSWKQJFKuP,0m
+ӋVӕWҧLWUӑQJJLDWăQJFӫDFKҩWOӓQJFKRFiFWUө,0 +ӋVӕWҧLWUӑQJJLDWăQJFӫDFKҩWOӓQJFKRWKQJFKuP,0 +ӋVӕTXiQWtQKFӫDFKҩWOӓQJ,0
7UӑQJOѭӧQJWKӇWtFKFӫDErW{QJ.500 kG/m 3
7UӑQJOѭӧQJWKӇWtFKFӫDQѭӟFELӇQ.025 kG/m 3
TUөEӏQJұSQѭӟFOrQÿӃQPӵFQѭӟFWƭQK
3KҫQQj\VӱGөQJ KDLWK{QJVӕVyQJOjH = 4,9m YӟLT = 6 sec&iFWK{QJVӕVyQJÿѭӧF VӱGөQJWӯNӃWTXҧWtQK[iFVXҩWWKHRSKѭѫQJSKiS+jPKӗLTX\YjTX\KRҥFKWKӵF QJKLӋPӣSKҫQWUrQ
2.8.5.3 ͇WTX̫WtQKWRiQ Ӣÿk\WtQKWҥLx=0 WUөFy WUQJYӟLWUөF FӫDWUөNKLÿyÿӍQKVyQJFҳWWUQJYӟLWUөFy nên ta có:
9ұ\ӣYQJQѭӟFVkXWDWtQKk WKHRF{QJWKӭFȦ 2 =kh ĈѭD k=0,1118 ; H=4,9m ; h= 110 m ; D 1=30 m PһWFҳWGѭӟLD 2 PPһWFҳWWUrQ Ȧ=1,0473 1/sec; T=6 sec ĈѭD x=YjRF{QJWKӭFWtQKYұQWӕFJLDWӕF có
2 ch ky t ch ky t kh sh t H kh kx sh ky ch v x ZH Z Z Z u Z
2 t ky ch kh t sh ky ch a x Z H Z Z u u
D ÿѭӧFWtQKWKHRD 1 0m và D 2 m EҵQJOұSWUuQKWKHRF{QJWKӭF
H k h là tang JyFQJKLrQJÿӝYiWPһWErQFӫDWUө
9ұQWӕFYjJLDWӕFOjKjPELӃQFӫDÿӝVkXy YjWKӡLJLDQt Oҩ\TXDȦt)
77 'Rÿy WtQKFK~QJÿӗQJWKӡLEӣLFKѭѫQJWUuQKWҥLFiF y và Ȧt NKiFQKDXUӗLÿѭDYjRF{QJ WKӭF0RULVRQf: x qt x x vt D a
7ӯÿk\WtQKKӧSOӵFFӫDELӇXÿӗf và momen M FӫDF x ÿӕLYӟLÿi\WUөWKHRF{QJWKӭF
Simpson PӝWFiFKGӉGjQJEҵQJFKѭѫQJWUuQKPi\WtQKĈk\OjFiFKWtQKPӟLYjÿѫQ giҧQKѫQVRYӟLFiFKOҩ\WtFKSKkQWUӵFWLӃSSKӭFWҥSQKѭWK{QJWKѭӡQJ
&iFJLiWUӏKӧSOӵFF xPRPHQWҥLFKkQWUөM x YjFiQKWD\ÿzQb ÿѭӧF[iFÿӏQKJLiWUӏ EӣLQJKLӋPJLҧLWtFK (xem hình 2.7)
Hình 2.7 ӃWTXҧELӇXÿӗOӵFQJDQJfx theo Morison và tính momen M
.KҧRViWPD[FӫDF x theo ȦtNӃWTXҧFKRWD
F x (max) = 4.7̭Q, khi Ȧt = 7,75WѭѫQJӭQJFy
7URQJFKѭѫQJWUuQKFNJQJFKRELӇXÿӗf theo các Ȧt khác nhau
3KҫQFKѭѫQJWUuQKPi\WtQKÿѭӧFLQӣSKҫQSKө OөF 2
Bài toán [iFÿӏQKWҧLWUӑQJVyQJWiFÿӝQJOrQ WUөCTBTL có WLӃWGLӋQ WKD\ÿәLtrong vùng QѭӟFVkX ÿѭӧF[iFÿӏQKEҵQJSKѭѫQJSKiSJLҧLWtFKNӃWKӧSYӟLOұSWUuQK máy tính và FKRWDPӝWNӃWTXҧÿiQJWLQFұ\
+ӧSOӵFFӫDELӇXÿӗf và momen M FӫDF x ÿӕLYӟLFKkQWUөWKHRF{QJWKӭFSimpson ÿѭӧFSKkQWtFKGӉGjQJEҵQJFiFKOұSWUuQKWUrQ Pi\WtQK1yÿѫQJLҧQKѫQFiFKWtQKWK{QJWKѭӡQJOjOҩ\WtFKSKkQWUӵFWLӃSNKiSKӭFWҥS
%,ӂ1'Ҥ1*Ĉӆ;È&Ĉӎ1+ CHUYӆ19ӎ &Ӫ$1ӄ1ĈҨ7 'ѬӞ,Ĉẩ@ĈRjQĈuQK4XDQJ³Tính toán ÿ͡O~QFͯDÿ̭WQ͉QG˱ͣLPyQJdàn kKRDQWU͕QJOF
W̩LNKXYF%͋1DP&{Q6˯Q´/XұQYăQWӕWQJKLӋSÿҥLKӑF.KRD.ƭWKXұWĈӏD
FKҩWYj'ҫXNKtĈҥLKӑFBách NKRD73+ӗ&Kt0LQKWKiQJQăP
Rem CHUONG TRINH TIM HAM HOI QUY
Static a(4, 4), ad(4, 4), tich(10, 10), p(10), p1(4, 4) As Double
Static km(4, 4), b(10), xo(10), y(10), dao(4, 4), xt(10, 10) As Double
Static nhan1(4, 8), nhan2(10, 10), hesob(10), x(8, 4), xxdd(1000), xxra(1000) As Double Show
Rem BAI TOAN CUA TRUONG, DUA TRUC TIEP SO LIEU VAO y(i) y(1) = 7.07: y(2) = 6.7: y(3) = 4.87: y(4) = 5.7: y(5) = 6.27: y(6) = 6.33: y(7) = 7.2: y(8) = 6.7 Rem dua ve dang da chuan hoa thi nghiem
Rem So lieu vao ma tran X dong = 8: cot = 4 x(1, 2) = 10.7: x(1, 3) = 8.9: x(1, 4) = 1# x(2, 2) = 11.3: x(2, 3) = 6.5: x(2, 4) = 2# x(3, 2) = 12#: x(3, 3) = 3.6: x(3, 4) = 3# x(4, 2) = 12.6: x(4, 3) = 5#: x(4, 4) = 4# x(5, 2) = 13.4: x(5, 3) = 6.1: x(5, 4) = 5# x(6, 2) = 4.1: x(6, 3) = 5.9: x(6, 4) = 6# x(7, 2) = 14.5: x(7, 3) = 6.7: x(7, 4) = 7# x(8, 2) = 11.3: x(8, 3) = 6.5: x(8, 4) = 8#
Print " So lieu vao ma tran X"
Print " So lieu vao vecto y"
Rem chuyen vi ma tran x
Rem cho ma tran don vi p1(1, 1) = 1: p1(1, 2) = 0: p1(1, 3) = 0: p1(1, 4) = 0 p1(2, 1) = 0: p1(2, 2) = 1: p1(2, 3) = 0: p1(2, 4) = 0 p1(3, 1) = 0: p1(3, 2) = 0: p1(3, 3) = 1: p1(3, 4) = 0 p1(4, 1) = 0: p1(4, 2) = 0: p1(4, 3) = 0: p1(4, 4) = 1 For kkk = 1 To cot
For j = 1 To cot km(i, j) = a(i, j) p(i) = p1(kkk, i)
Rem GIAI HE PHUONG TRINH DAI SO TUYEN TINH mhe = cot
For k = 1 To mhe b(k) = p(k): Rem doi don vi Tan, Tan.m
For i = k To mhe da = km(i, n) / de b(i) = b(i) - b(n) * da
For j = s To mhe km(i, j) = km(i, j) - km(n, j) * da
201 For j = 1 To mhe ac = km(n, j)
Next i xo(mhe) = b(mhe) / km(mhe, mhe) k1 = mhe k2 = mhe - 1
For j = k1 To mhe r = r + xo(j) * km(k4, j)
Rem in vec to nghiem xo(i)
701 uu$ = " dinh thuc bang khong"
Print , " He phuong trinh vo nghiem"
For j = 1 To mhe ad(j, kkk) = xo(j)
'Print " ma tran nghich dao (Xt*X)-1"
For d = 1 To cot tich(i, j) = tich(i, j) + a(i, d) * ad(d, j)
'Print " In ra tich ma tran (Xt*X)-1 va matran (Xt*X phai bang don vi "
Rem NHAN ADAO VOI XT DE THU XEM CO BANG MA TRAN DON VI KHONG 'Print "In ra tich ma tran (Xt*X)-1 va ma tran Xt"
For d = 1 To cot nhan1(i, j) = nhan1(i, j) + ad(i, d) * xt(d, j)
'Print " " & Format(nhan1(ik, jk), "0.00000");
For d = 1 To dong hesob(i) = hesob(i) + nhan1(i, d) * y(d)
Rem ham hoi quy la chieu cao song H=y
Rem Chon diem T=6 (sec); huong=3 ; tháng=6 , ta co: Hmax=4,9 m voi T=6 sec Print " In ra he so b cua ham hoi quy "
Print "y = b(1) + b(2) * x(2)+ b(3) * x(3) + b(4) * b(4)" yy = hesob(1) + hesob(2) * 6 + hesob(3) * 3# + hesob(4) * 6
Rem DOAN TINH SO SONG k t = 6: 't la chu ky
Print "omega ="; omega; " (1/m)" buoc = 1 kk0 = 0.1117 ee = 0.0001
'Print "khi kh=1 thi k = " & Format(kk0, " 0.0000")
'Print " da nhan k= " & Format(kk0, " 0.0000")
100 h = 15# kh = kk0 * h t1 = Exp(kh) t2 = 1 / t1 ssh = (t1 - t2) / 2 cch = (t1 + t2) / 2 tth = ssh / cch kk = omega * omega / (9.81 * tth)
'Print "buoc "; buoc; ": kh = " & Format(kh, " 0.000"); " th = " & Format(tth, " 0.0000"); " da tinh ra k = " & Format(kk, " 0.0000")
If Abs(kk - kk0) < ee Then GoTo 199 kk0 = kk buoc = buoc + 1
'Print " da nhan k= " & Format(kk, " 0.0000")
Rem KHI VUNG NUOC CO DO SAU h LON nghia la kh >3.14 thi lay k = omega * omega / 9.81
Print " Voi vung nuoc sau lay k = " & Format(kk, " 0.0000")
Rem NUOC SAU THI VAN TOC GIAM NHANH THEO DO SAU omega = Sqr(9.81 * k)
Rem giai phuong trinh bac 2
Rem CHUONG TRINH VE DAO DONG KHUNG CONG TRINH BIEN
Static a(4, 4), ad(4, 4), tich(10, 10), p(10), p1(4, 4) As Double
Static km(4, 4), b(10), xo(10), y(10), dao(4, 4), xt(10, 10) As Double
Static nhan1(4, 8), nhan2(10, 10), hesob(10), x(8, 4), xxdd(1000), xxra(1000) As Double
Rem DOAN TINH SO SONG k t = 6: 't la chu ky omega = 2 * 3.1416 / t
'Print "omega ="; omega; " (1/m)" buoc = 1 kk0 = 0.1117 ee = 0.0001
'Print "khi kh=1 thi k = " & Format(kk0, " 0.0000")
'List1.AddItem " da nhan k= " & Format(kk0, " 0.0000")
100 h = 15# kh = kk0 * h t1 = Exp(kh) t2 = 1 / t1 ssh = (t1 - t2) / 2 cch = (t1 + t2) / 2 tth = ssh / cch kk = omega * omega / (9.81 * tth)
'Print "buoc "; buoc; ": kh = " & Format(kh, " 0.000"); " th = " & Format(tth, " 0.0000"); " da tinh ra k = " & Format(kk, " 0.0000")
If Abs(kk - kk0) < ee Then GoTo 199 kk0 = kk buoc = buoc + 1
'List1.AddItem " da nhan k= " & Format(kk, " 0.0000")
Rem KHI VUNG NUOC CO DO SAU h LON nghia la kh >3.14 thi lay
'Print " Voi vung nuoc sau lay k = " & Format(kkk, " 0.0000")
List1.AddItem " Voi vung nuoc sau lay "
Rem NUOC SAU THI VAN TOC GIAM NHANH THEO DO SAU k = 0.1118 ro = 1.024: cvt = 1: cqt = 2: d1 = 30#: d2 = 15#: h = 110#: h0 = 4.9
Dim fx(200), mx(200) ro = 1.024: cvt = 1: cqt = 2: d1 = 30#: d2 = 15#: h = 110#: h0 = 4.9 dentad = (d1 - d2) / 2 tank1 = 2 * (h + h0 / 2) / (d1 - d2) tank2 = 1 / tank1
'List2.AddItem " tang1= " & Format(tank1, " 0.0000")
'List2.AddItem " tang2= " & Format(tank2, " 0.0000") omega = Sqr(9.81 * k)
'List2.AddItem " omega= " & Format(omega, " 0.0000")
Dim omet(100), hopfx(100), hopmx(100) hmax = h + (h0 / 2)
Rem VE DONG VE DONG VE DONG VE DONG VE DONG
Cls: Rem SAU CLS CO 2 CHAM THI LUU LAI DO THI TAN SO j = HScrtanso.Value: 'Mo j
Rem VE TINH VE TINH VE TINH VE TINH VE TINH VE TINH VE TINH
'For j = 1 To 15: 'mo for omet(j) = omega * (6 + j * 0.2)
List2.AddItem " " & " omega(" & j & ") = " & Format(omet(j), "0.00")
'eta = (h0 / 2) * Cos(omet(j)): ' o dinh song Cos(omega)=0 zy = h + (h0 / 2) * Cos(omet(j)): ' tinh o dinh song, o day bien y=0 u1 = Exp(k * h) u2 = Exp(-k * h) ss = (u1 - u2) / 2 hs = (omega * h0 / 2) / ss
'List2.AddItem " hsvx= " & Format(hs, " 0.000000000") hsax = (omega * omega * h0 / 2) / ss
'List2.AddItem " hsax= " & Format(hsax, " 0.000000000")
For i = 0 To hmax dtt = (h + (h0 / 2) * Cos(omet(j)) - i) * tank2 d = d2 + 2 * dtt r1 = Exp(k * i) r2 = 1 / r1 cc = (r1 + r2) / 2 vx = hs * cc * Cos(omet(j)) ax = hs * omega * cc * Sin(omet(j))
Rem in vx ra de so sanh voi vung nuoc nong gan bo
'List2.AddItem " vx= " & i & " " & Format(vx, " 0.0000") & " ax= " & Format(ax, " 0.0000") fx(i) = 0.5 * ro * cvt * d * Abs(vx) * vx + ro * cqt * (3.1416 * d) * (3.1416 * d) * ax / 4 mx(i) = fx(i) * (i - 0.5)
'List2.AddItem " " & (i) & " D=" & Format(d, "0.0") & " fx=" & Format(fx(i), " 0.0000") Scale (-320, 240)-(320, -240) xphai = 30
Rem ve vx de so sanh voi vung nuoc nong gan bo
Rem VE CHO TRUONG HOP MAX la j=7
Rem ve tinh tinh tinh
'PSet (fx(i) / 50 - xphai, i), QBColor(15): 'mo lenh ve
Rem ve dong ve dong
PSet (-fx(i) / 50 - xphai, i), QBColor(15): 'mo lenh ve
'Line (-fx(i) / 50 - xphai, i)-(0 - xphai, i), QBColor(11)
For i = 1 To hmax hopfx(j) = hopfx(j) + fx(i) hopmx(j) = hopmx(j) + mx(i)
PSet (omet(j) * 25 - 50 - 7 * xphai, hopfx(j) / 700), QBColor(11) Rem doi kN ve Tan (chia cho 10)
List1.AddItem " " & " omega(" & j & ") = " & Format(omet(j), "0.00") List1.AddItem " Fx =" & Format(hopfx(j) / 10, "0.00") & " Tan, " List1.AddItem " mz =" & Format(hopmx(j) / 10, "0.00") & " Tm" tay = hopmx(j) / hopfx(j)
Rem tinh cho truong hop Fx cuc dai
'eta = (h0 / 2) * Cos(omet(j)): ' o dinh song Cos(omega)=0 zy = h + (h0 / 2) * Cos(omet(j)): ' tinh o dinh song, o day bien y=0 u1 = Exp(k * h) u2 = Exp(-k * h) ss = (u1 - u2) / 2 hs = (omega * h0 / 2) / ss
'List2.AddItem " heso= " & Format(hs, " 0.000000000")
For i = 0 To hmax dtt = (h + (h0 / 2) * Cos(omet(j)) - i) * tank2 d = d2 + 2 * dtt r1 = Exp(k * i) r2 = 1 / r1
128 cc = (r1 + r2) / 2 vx = hs * cc * Cos(omet(j)) ax = hs * omega * cc * Sin(omet(j))
'List2.AddItem " vx= " & Format(vx, " 0.0000") & " ax= " & Format(ax, " 0.0000") fx(i) = 0.5 * ro * cvt * d * Abs(vx) * vx + ro * cqt * (3.1416 * d) * (3.1416 * d) * ax / 4 mx(i) = fx(i) * (i - 0.5)
List2.AddItem " y= " & i & ", D=" & Format(d, "0.0") & ", fx=" & Format(fx(i) / 10, " 0.0000") Scale (-320, 240)-(320, -240) xphai = 30
For i = 1 To hmax hopfx(j) = hopfx(j) + fx(i) hopmx(j) = hopmx(j) + mx(i)
Rem doi kN ve Tan (chia cho 10)
'List1.AddItem " Fx =" & Format(hopfx(j) / 10, "0.00") & " Tan " & " omegat= " & Format(omet(j), "0.00")
'List1.AddItem " mz =" & Format(hopmx(j) / 10, "0.00") & " Tm" tay = hopmx(j) / hopfx(j)
'List1.AddItem " ome =" & Format(ome, "0.00")
Rem CHI VE DEN d` (voi d` thi chuyen vi=0 tren truc dung) DE LAY 1 DAU CUA CHUYEN VI Rem NEU da THi CHUYEN Vi BAT DAU DOi DAU
Dim vte(1000), uer(1000), urq(1000), tx1(1000), tx2(1000), dx1(1000), dy1(1000), dx2(1000), dy2(1000) As Double
Dim r(1000), rr(1000), ttx(1000), tty(1000), x0(1000), y0(1000) As Double
Dim urp(1000), urch(1000), urt(1000), urpp(1000), xima(900)
Open "d:\cv18.txt" For Output As #1
Textdd.Text = HScrdd.Value jd = HScrdd.Value + 0: 'Gan j de viet goc bang do dd = jd: Rem Dieu kien duong kinh d