§1CÁC LIÊN KẾT KHÔNGGIAN 1.1 Liên kết đơn giản: là liên kết nối hai vật thể a) Liên kết thanh không gian. Liên kết thanh khônggian (hình 6.1) được cấu tạo từ một thanh (hoặc một vật thể) có khớp cầu lý tưởng hai đầu. Liên kết thanh khử được chuyển vị thẳng theo phương trục thanh của vật thể B so với vật thể A xem như cố định, tức là khử được một bậc tự do. Do đó trong liên kết thanh phát sinh một phản lực dọc theo trục thanh b) Liên kết cấu tạo bởi hai liên kết thanh đồng phẳng. − Trường hợp hai liên kết thanh đồng quy. − Trường hợp hai liên kết thanh song song. c) Liên kết cấu tạo bởi ba liên kết thanh không đồng phẳng. d) Liên kết hàn. Liên kết hàn khử được toàn bộ sáu bậc tự do của vật thể.Trong liên kết phát sinh một phản lực có phương và điểm đặt chưa biết. • Có thể đưa phản lực này về một điểm xác định nào đó ta sẽ được sáu thành phần: ba thành phần lực đặt tại điểm xác định hướng theo ba trục của hệ tọa độ bất kỳ trongkhônggian và ba thành phần mômen xung quanh ba trục hệ tọa đọ đó. 1 −= Vp p V 6.1.2 Liên kết phức tạp Trong thực tế có thể gặp liên kết hàn hoặc liên kết khớp cầu đồng thời cùng nối nhiều vật thể (từ ba vật thể trở lên) với nhau thì liên kết đó gọi là liên kết phức tạp. Độ phức tạp của liên kết phức tạp là số liên kết đơn giản cùng loại tương đương với liên kết phức tạp đó. Độ phức tạp của liên kết phức tạp được xác định theo công thức: − độ phức tạp. − số vật thể quy tụ vào liên kết phức tạp. 6.2.CÁCH XÁC ĐỊNH PHẢN LỰC VÀ NỘI LỰCTRONGHỆ DÀN KHÔNGGIAN TĨNH ĐỊNH *1.Vận dụng phương pháp mặt cắt và sử dụng các phương trình cân bằng tĩnh học để xác định phản lực và nộilựctrong hệ. Tại mỗi mặt cắt có thể lập được sáu phương trình cân bằng, trong đó có hai nhóm thường được sử dụng: - Ba phương trình hình chiếu lên ba trục X, Y, Z và ba phương trình cân bằng mômen đối với ba trục: - Sáu phương trình cân bằng mômen đối với sáu trục *2.Vận dụng phương pháp phân tích dàn khônggian thành những dàn phẳng: Nếu dàn khônggian gồm nhiêù dàn phẳng BBH ghép lại thì ta có thể phân Tích thành những dàn phẳng để tính riêng. Vì trong dàn không gian, nếu tải trọng chỉ tác dụng trong mặt phảng của từng dàn phẳng BBH cân bằng với nhau, hoặc cân bằng với các phản lực tựa thí lự dọc chỉ phát sinh trong những thanh thuộc dàn phảng đó còn những thanh không nằm trong mặt phảng đó sẽ cólực dọc bằng 0 Ví dụ: . 6. 2.CÁCH XÁC ĐỊNH PHẢN LỰC VÀ NỘI LỰC TRONG HỆ DÀN KHÔNG GIAN TĨNH ĐỊNH *1.Vận dụng phương pháp mặt cắt và sử dụng các phương trình cân bằng tĩnh học để xác định phản lực và nội lực trong hệ. . thành phần lực đặt tại điểm xác định hướng theo ba trục của hệ tọa độ bất kỳ trong không gian và ba thành phần mômen xung quanh ba trục hệ tọa đọ đó. 1 −= Vp p V 6. 1.2 Liên kết phức tạp Trong thực. §1CÁC LIÊN KẾT KHÔNG GIAN 1.1 Liên kết đơn giản: là liên kết nối hai vật thể a) Liên kết thanh không gian. Liên kết thanh không gian (hình 6. 1) được cấu tạo từ một thanh (hoặc