1. Trang chủ
  2. » Luận Văn - Báo Cáo

final report applied calculus for information technology

23 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Final Report Applied Calculus For Information Technology
Tác giả Dương Minh Hiếu, Nguyễn Cao Kỳ
Người hướng dẫn M.A. Phạm Kim Thủy
Trường học Ton Duc Thang University
Chuyên ngành Information Technology
Thể loại final report
Năm xuất bản 2024
Thành phố Ho Chi Minh City
Định dạng
Số trang 23
Dung lượng 1,29 MB

Nội dung

FACULTY OF INFORMATION TECHNOLOGYDƯƠNG MINH HIẾU-523H0028NGUYỄN CAO KỲ-523H0049FINAL REPORTAPPLIED CALCULUS FORINFORMATION TECHNOLOGY HO CHI MINH CITY, 2024... First of all, I want to th

Trang 1

FACULTY OF INFORMATION TECHNOLOGY

DƯƠNG MINH HIẾU-523H0028

Trang 2

DƯƠNG MINH HIẾU-523H028

Trang 3

First of all, I want to thank Ton Duc Thang University, Department of Information Technology, software engineering industry and I want to thank my teacher, Ms Pham Kim Thuy Perhaps because of exposure to a completely new learning environment and creative instructors, my mind felt excited, happy, and surprised What pleased me most was that, in the first semester, I had the opportunity to interact with Ms Pham Kim Thuy's Applied Calculus for Information Technology curriculum I would like to express my sincere gratitude for her passion for teachingand imparting knowledge, which has provided an important support for me to have

a source of information about mathematics applications for the information technology industry

In addition, I would like to thank the speaker who contacted Ton Duc Thang University, helping me complete this article successfully Both provided their experiences, such as how to write an article, or how to organize it, so that I could filter the material more clearly

Finally, I want to wish Ton Duc Thang University, the Department of Information Technology, the Department of Applied Calculus for Information Technology and

Ms Pham Kim Thuy to achieve achievements in life, achieve all goals, especially inthe field of education As a first-year student, I found that eliminating the

limitations in this essay was a challenge, so I looked forward to the advice and comments of the class teacher, Ms Pham Kim Thuy, to help me complete it into this essay better in the near future

Ho Chi Minh city, 7th January, 2024 Author

Dương Minh Hiếu Nguyễn Cao Kỳ

Trang 4

AT TON DUC THANG UNIVERSITY

I hereby declare that this is my own research work and is under the scientific guidance of M.A Phạm Kim Thủy The research content and results in this topic are honest and have not been published in any form before The data in the tables for analysis, comments, and evaluation were collected by the author from different sources and clearly stated in the reference section

In addition, the Project also uses a number of comments, value assessments

as well as data from other authors and other organizations, all with citations and source notes

If any nano species are discovered, I will take full responsibility for the content of my Project Ton Duc Thang University is not related to these

Hồ Chí Minh city , 7th January, 2024 Author

Dương Minh Hiếu

Nguyễn Cao Kỳ

Trang 5

I applied the mathematical rules, laws, and theorems I learned to my final

report in applied calculus for information technology course, such as

Even-Odd functions, Infinite limits, Derivatives of functions, The equation of tangent line, First derivative test, Arc length formula, and The Ratio test This enabled me to successfully complete the report, fostering a deeper

comprehension of mathematical operations while solidifying the knowledge

I had acquired

Trang 6

TABLE OF CONTENTS

CHAPTER 1.SOLUTION

1.1 QUESTION 1

1.2 QUESTION 2

1.3 QUESTION 3

1.4 QUESTION 4

1.5 QUESTION 5

1.6 QUESTION 6

1.7 QUESTION 7

1.8 QUESTION 8

1.9 QUESTION 9

CHAPTER 2.CONCLUSION

CHAPTER 3.LIST OF REFERENCES

Trang 7

CHAPTER 1.SOLUTION1.1 QUESTION 1

Tell whether the following functions are even, odd, or neither Give reasons for your answer

 SOLUTION:

 Even function: for all in the domain of

 Odd function: for all in the domain of

Now, let’s analyze the given function:

 Substitute into the function:

Now, compare with :

Trang 8

As approaches 5 from the right :

Substitute , where is a small positive number approaching zero:

Trang 9

Since is approaching zero, the term becomes negligible:

This limit is also infinite, as the denominator approaches 0.Limit as approaches 5 from the right is +∞

x → 5−¿ ¿

As x approaches 5 from the left :

Substitute , where is a small positive number approaching 0:

Since is approaching 0, the term becomes negligible:

This limit is also infinite, as the denominator approaches 0 Limit as approaches 5 from the left is −∞

Trang 10

x →−5+ ¿¿

As approaches -5 from the right :

Substitute , where is a small positive number approaching 0:

Since is approaching 0, the term becomes negligible:

So, this limit is negative infinity, as the denominator approaches 0 from thenegative side

Therefore, the limit as approaches from the right is ∞

x →−5− ¿ ¿

As approaches -5 from the left :

Trang 11

 Substitute , where is a small positive number

approaching 0:

 Since is approaching zero, the term becomes negligible:

This limit is positive infinity, as the denominator approaches 0 from the positive side

Limit as approaches from the left is +∞

1.3 QUESTION 3

Find the derivative dy dx of the following functions:

 SOLUTION:

 To find the derivative of the given function , we can use the

quotient rule The quotient rule states that if you have a function , then the derivative is given by:

Trang 13

The point of tangency is A(x0, y0)= A(0,3)

 The equation of the tangent line to the graph of a function at a point A(0,3):

Trang 14

1.5 QUESTION 5

Given the derivative f '(x)=(sinx cosx+ )(sinx cosx− ), 0≤ x ≤ π2

 What are the critical numbers of f ?

 SOLUTION:

 Let f be continuous and c a critical number of f

o If f ' changes from positive to negative at c then f has a local maximum

at c;

o If f ' changes from negative to positive at c, then f has a local minimum

at c

o If f ' does not change sign at c, then f has no local max / min at c

f '(x)=0 ⇔(sinx cosx+ ) (sinx cosx− )=0

Trang 16

2

−12

Look at the variable table, we have:

Trang 17

1.6 QUESTION 6

Find all curves through a point where x=1 whose are length is the following L

value:

L=∫1

Trang 18

The series a2+a4+a8+ a16+… a2n+diverges.

Determine the convergence or divergence of the following series Explain indetails

Consider the series :

Since this series diverges (assumption) it does not approach zero as n increases

Since

Since series diverges:

Trang 19

Series diverges.

Series diverges too

Trang 20

960 1000 20( − − )20 earphones sold; so on Find the revenue in case the price ofeach earphone is $255.

Trang 21

 R as the initial revenue, which is $55,000.

P as the increase in price for each $5 increase, which is $5

E as the decrease in the number of earphones sold for each $5 increase,which is 20

The relationship between the price increase and the decrease in the number

of earphones sold can be expressed as:

∆ E=∆ P5Now, let’s find the number of earphones sold when the price is $255 The pricehas increased by (255−55)=200 dollars, and for each $5 increase, 20 fewerearphones are sold So, the number of earphones sold (E) is given by:

Trang 22

My essay has played a significant role in solidifying my knowledge of

mathematics and expanding my programming mindset Throughout this journey, I've come to appreciate not only the intrinsic value of each piece of knowledge butalso the synergy and application of these concepts in the real world In the realm

of programming, questioning the significance of each subject has become a natural habit This has helped me not only comprehend why I'm studying a particular subject but also understand its connections and applications in the field

of programming The process of self-learning and posing challenging questions has allowed me to build a profound understanding of the material This has not only enhanced problem-solving skills but has also fueled intrinsic motivation to continue learning and exploring Evaluating the value of each test, thesis, and class is like constructing a roadmap for personal development It serves not only

as a tool for identifying strengths and weaknesses but also as a source of motivation to continuously improve and achieve larger goals in the learning journey

Trang 23

CHAPTER 3.LIST OF REFERENCES

[1] George B Thomas, Jr., Maurice D Weir, Joel Hass, [2010], Thomas' calculus, Pearson, Boston

[2] James Stewart, [2012], Calculus, Brooks/Cole, USA

[3] R W Hamming, [1986], Numerical Methods for Scientists and Engineers, Dover Publications, NY

[4] Steven Chapra, [2012], Applied Numerical Methods with MATLAB: for Engineers & Scientists, McGraw-Hill Education, NY

[5] Timothy A Davis, [2011], MATLAB® Primer, CRC Press, Boca Raton

SAKAI and other related links: http://sakai.it.tdt.edu.vn

Ngày đăng: 08/05/2024, 16:24

w