THI TH I HC, CAO NG 2012 Mụn thi : TON ( 77) I:PHN CHUNG CHO TT C CC TH SINH (7,0 im) Câu I (2 điểm). Cho hàm số 2 12 + + = x x y có đồ thị là (C) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2.Chứng minh đờng thẳng d: y = -x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Câu II (2 điểm) 1.Giải phơng trình 9sinx + 6cosx 3sin2x + cos2x = 8 2 .Tớnh tớch phõn: 3 2 0 2 1 1 x x I dx x + = + . Câu III (2 điểm). 1.Gii bt phng trỡnh: 2 10 5 10 2x x x+ + 2.Có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và ba chữ số lẻ Câu IV (1 điểm). Cho lăng trụ tam giác ABC.A 1 B 1 C 1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 0 . Hình chiếu H của điểm A trên mặt phẳng (A 1 B 1 C 1 ) thuộc đờng thẳng B 1 C 1 . Tính khoảng cách giữa hai đờng thẳng AA 1 và B 1 C 1 theo a. II. PHN RIấNG (3.0 im) Câu Va 1.(2 điểm)Trong mặt phẳng với hệ tọa độ Oxy cho đờng tròn (C) có phơng trình (x-1) 2 + (y+2) 2 = 9 và đờng thẳng d: x + y + m = 0. Tìm m để trên đờng thẳng d có duy nhất một điểm A mà từ đó kẻ đợc hai tiếp tuyến AB, AC tới đờng tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2.(1 điểm). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. Câu Vb 1 (2 điểm)Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đờng thẳng d có phơng trình 3 1 12 1 == zyx . Lập phơng trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. 2.(1 điểm) Xét ba số thực không âm a, b, c thỏa mãn a 2009 + b 2009 + c 2009 = 3. Tìm giá trị lớn nhất của biểu thức P = a 4 + b 4 + c 4 Ht THI TH I HC CAO NG 1 ỏp ỏn THI TH I HC, CAO NG Mụn thi : TON ( 77 ) I:PHN CHUNG CHO TT C CC TH SINH (7,0 im) CõuI:)(2 điểm) 1) a.TXĐ: D = R\{-2} b.Chiều biến thiên +Giới hạn: +==== + + 22 lim;lim;2limlim xx xx yyyy Suy ra đồ thị hàm số có một tiệm cận đứng là x = -2 và một tiệm cận ngang là y = 2 + Dx x y > + = 0 )2( 3 ' 2 Suy ra hàm số đồng biến trên mỗi khoảng )2;( và );2( + +Bảng biến thiên x -2 + y + + + 2 y 2 c.Đồ thị:Đồ thị cắt các trục Oy tại điểm (0; 2 1 ) và cắt trục Ox tại điểm( 2 1 ;0) Đồ thị nhận điểm (-2;2) làm tâm đối xứng 2)Hoành độ giao điểm của đồ thị (C ) và đờng thẳng d là nghiệm của phơng trình =++ += + + )1(021)4( 2 2 12 2 mxmx x mx x x Do (1) có mmmvam =++>+= 0321)2).(4()2(01 22 nên đờng thẳng d luôn luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B Ta có y A = m x A ; y B = m x B nên AB 2 = (x A x B ) 2 + (y A y B ) 2 = 2(m 2 + 12) suy ra AB ngắn nhất AB 2 nhỏ nhất m = 0. Khi đó 24=AB Cõu II:)(2 điểm) 1)(1 điểm).Phơng trình đã cho tơng đơng với 9sinx + 6cosx 6sinx.cosx + 1 2sin 2 x = 8 6cosx(1 sinx) (2sin 2 x 9sinx + 7) = 0 6cosx(1 sinx) (sinx 1)(2sinx 7) = 0 (1-sinx)(6cosx + 2sinx 7) = 0 =+ = )(07sin2cos6 0sin1 VNxx x 2 2 kx += 2) (1 điểm).Tớnh: 3 2 0 2 1 1 x x I dx x + = + t 2 1 1x t x t+ = = => dx=2tdt; khi x=0=>t=1,x=3=>t=2 ( ) ( ) ( ) 2 2 2 2 2 5 4 2 3 2 1 1 1 2 1 1 1 4 128 4 124 54 2 =2 2 3 2 = 16 2 14 5 5 5 5 5 t t t I tdt t t dt t t + = = + = = ữ THI TH I HC CAO NG 2 x y O 2 -2 Câu III (2 điểm). 1(1 điểm) BG: Gii bt phng trỡnh: 2 10 5 10 2x x x+ + (1) iu kin: 2x ( ) 2 1 2 10 2 5 10 2 6 20 1(2)x x x x x x + + + + + Khi 2x => x+1>0 bỡnh phng 2 v phng trỡnh (2) ( ] [ ) 2 2 2 (2) 2 6 20 2 1 4 11 0 x ; 7 3;x x x x x x + + + + + Kt hp iu kin vy nghim ca bt phng trỡnh l: 3x 2. (1 điểm).Từ giả thiết bài toán ta thấy có 10 2 5 =C cách chọn 2 chữ số chẵn (kể cả số có chữ số 0 đứng đầu) và 3 5 C =10 cách chọn 2 chữ số lẽ => có 2 5 C . 3 5 C = 100 bộ 5 số đợc chọn. Mỗi bộ 5 số nh thế có 5! số đợc thành lập => có tất cả 2 4 C . 3 5 C .5! = 12000 số. Mặt khác số các số đợc lập nh trên mà có chữ số 0 đứng đầu là 960!4 3 5 1 4 =CC . Vậy có tất cả 12000 960 = 11040 số thỏa mãn bài toán II.Phần riêng.( 3im ) Câu Va : 1)(2 điểm)Từ pt ct của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp tuyến AB, AC tới đờng tròn và ACAB => tứ giác ABIC là hình vuông cạnh bằng 3 23= IA = = == 7 5 6123 2 1 m m m m 2. (1 điểm)Từ giả thiết bài toán ta thấy có 6 2 4 =C cách chọn 2 chữ số chẵn (vì không có số 0)và 10 2 5 =C cách chọn 2 chữ số lẽ => có 2 4 C . 2 5 C = 60 bộ 4 số thỏa mãn bài toán Mỗi bộ 4 số nh thế có 4! số đợc thành lập. Vậy có tất cả 2 4 C . 2 5 C .4! = 1440 số Câu Vb 1)(2 điểm)Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có HIAH => HI lớn nhất khi IA Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véc tơ pháp tuyến )31;;21( tttHdH ++ vì H là hình chiếu của A trên d nên )3;1;2((0. == uuAHdAH là vtcp của d) )5;1;7()4;1;3( AHH Vậy (P): 7(x 10) + (y 2) 5(z + 1) = 0 7x + y -5z -77 = 0) 2). (1 điểm)áp dụng bất đẳng thức Cô si cho 2005 số 1 và 4 số a 2009 ta có )1(.2009 20091 11 4 2009 20092009200920092009200920092009 2005 aaaaaaaaa =+++++++ Tơng tự ta có )2(.2009 20091 11 4 2009 20092009200920092009200920092009 2005 bbbbbbbbb =+++++++ )3(.2009 20091 11 4 2009 20092009200920092009200920092009 2005 ccccccccc =+++++++ Cộng theo vế (1), (2), (3) ta đợc )(20096027 )(2009)(46015 444 444200920092009 cba cbacba ++ +++++ Từ đó suy ra 3 444 ++= cbaP Mặt khác tại a = b = c = 1 thì P = 3 nên giá trị lớn nhất của P = 3. Ht THI TH I HC CAO NG 3 . giả thi t bài toán ta thấy có 10 2 5 =C cách chọn 2 chữ số chẵn (kể cả số có chữ số 0 đứng đầu) và 3 5 C =10 cách chọn 2 chữ số lẽ => có 2 5 C . 3 5 C = 100 bộ 5 số đợc chọn. Mỗi bộ 5 số. điểm)Từ giả thi t bài toán ta thấy có 6 2 4 =C cách chọn 2 chữ số chẵn (vì không có số 0)và 10 2 5 =C cách chọn 2 chữ số lẽ => có 2 4 C . 2 5 C = 60 bộ 4 số thỏa mãn bài toán Mỗi bộ 4 số nh. có 5! số đợc thành lập => có tất cả 2 4 C . 3 5 C .5! = 12000 số. Mặt khác số các số đợc lập nh trên mà có chữ số 0 đứng đầu là 960!4 3 5 1 4 =CC . Vậy có tất cả 12000 960 = 11040 số thỏa