ĐỀTHITHỬĐẠI HỌC, CAO ĐẲNG NĂM 2010. Mônthi : TOÁN (ĐỀ 162) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH: Câu I( 2,0 điểm): Cho hàm số: (C) 1. Khảo sát và vẽ đồ thị (C) hàm số 2. Tìm trªn trục hoành nh÷ng ®iÓm mµ tõ ®ã kẻ được 3 tiếp tuyến tới đồ thị (C) Câu II (2,0 điểm): 1. Giải phương trình lượng giác. 2. Giải hệ phương trình. Câu III(1,0 điểm): Tính tích phân sau. ∫ = 3 4 42 cos.sin π π xx dx I Câu IV(1,0 điểm): Cho tứ diện ABCD có AC = AD = , BC = BD = a, khoảng cách từ B đến mặt phẳng (ACD) bằng . Tính góc giữa hai mặt phẳng (ACD) và (BCD). Biết thể của khối tứ diện ABCD bằng . Câu V(1,0 điểm): Cho ba số thực thỏa mãn ,Chứng minh rằng: PHẦN RIÊNG (Thí sinh chỉ được làm 1 trong 2 phần A hoặc B) A. Theo chương trình chuẩn. Câu VIa(2,0 điểm): 1. Trong không gian với hệ tọa độ vuông góc Oxyz. Viết phương trình đường thẳng qua điểm A(1;1;0) đồng thời cắt cả hai đường thẳng 1 x 1 (d ) : y t ; (t R) z t = = ∈ = v à 2 x 1 u (d ) : y 0 ; (u R) z 1 = − + = ∈ = . 2. Trong mp với hệ tọa độ Oxy cho đường tròn : x 2 +y 2 -2x +6y -15=0 (C ). Viết PT đường thẳng (Δ) vuông góc với đường thẳng : 4x-3y+2 =0 và cắt đường tròn (C) tại A; B sao cho AB = 6 Câu VIIa(1,0 điểm): Xác định hệ số của x 5 trong khai triển (2+x +3x 2 ) 15 B. Theo chương trình nâng cao. Câu VIb(2,0 điểm): 1. Trong không gian với hệ tọa độ vuông góc Oxyz, cho mặt cầu 2 2 2 (S) : (x 1) (y 2) (z 3) 64− + + + + = và mặt phẳng (P) : 2x y 2z 13 0− + + = cắt nhau theo giao tuyến là đường tròn (C). Xác định tâm và bán kính của đường tròn đó. 2. Trong mp với hệ tọa độ Oxy cho đường tròn : x 2 +y 2 -2x +6y -15=0 (C ). Viết PT đường thẳng (Δ ) vuông góc với đường thẳng : 4x-3y+2 =0 và cắt đường tròn (C) tại A; B sao cho AB = 6 Câu VIIb(1,0 điểm):Giải phương trình: 3 log (log (9 72)) 1 x x − ≤ HẾT Cán bộ coi thi không giải thích gì thêm. (Hướng dẫn ĐỀTHITHỬĐẠI HỌC, CAO ĐẲNG NĂM 2010. Mônthi : TOÁN (ĐỀ 162) CÂU NỘI DUNG ĐIỂM I 2,0 1 1,0 • TXĐ: D= R\{1} • y’= Hàm số luông nghịch biến trên D và không có cực trị 0,25 • Giới hạn: • PT đường TCĐ: x=1; PT đường TCN: y=1 0,25 • Bảng biên thiên: t - 1 + f ’ (t) - + f(t) 1 + - 1 0,25 • Đồ thị: 0,25 2 1,0 • Gọi k là hệ số góc của đt đi qua A(0;a). PT đt d có dạng y= kx+a (d) • d là tiếp tuyến với ( C ) ⇔ hệ PT có nghiệm 0,25 H D E C B A x y f x ( ) = x+2 x-1 1 4 -2 -2 O 1 2 3 5/2 I A H B . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010. Môn thi : TOÁN (ĐỀ 162) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH: Câu I( 2,0 điểm): Cho hàm số: (C) 1. Khảo sát và vẽ đồ thị (C) hàm số 2. Tìm trªn. HẾT Cán bộ coi thi không giải thích gì thêm. (Hướng dẫn ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010. Môn thi : TOÁN (ĐỀ 162) CÂU NỘI DUNG ĐIỂM I 2,0 1 1,0 • TXĐ: D= R{1} • y’= Hàm số luông nghịch. PT đường TCĐ: x=1; PT đường TCN: y=1 0,25 • Bảng biên thi n: t - 1 + f ’ (t) - + f(t) 1 + - 1 0,25 • Đồ thị: 0,25 2 1,0 • Gọi k là hệ số góc của đt đi qua A(0;a). PT đt d có dạng y= kx+a