ĐỀSỐ3 CÂU1: (3 điểm) Cho hàm số: y = 1 12 2 x mxm (1) (m là tham số) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) ứng với m = -1. 2) Tính diện tích hình phẳng giới hạn bởi đường cong (C) và hai trục toạ độ. 3) Tìm m để đồ thị của hàm số (1) tiếp xúc với đường thẳng y = x. CÂU2: (2 điểm) 1) Giải bất phương trình: (x 2 - 3x) 0 2 3 2 2 x x . 2) Giải hệ phương trình: y yy x xx x 2 2 24 452 1 23 CÂU3: (1 điểm) Tìm x [0;14] nghiệm đúng phương trình: cos3x - 4cos2x + 3cosx - 4 = 0 . CÂU4: (2 điểm) 1) Cho hình tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC); AC = AD = 4 cm ; AB = 3 cm; BC = 5 cm. Tính khoảng cách từ điểm A tới mặt phẳng (BCD). 2) Trong không gian với hệ toạ độ Đềcác vuông góc Oxyz, cho mặt phẳng (P): 2x - y + 2 = 0 và đường thẳng d m : 02412 01112 mzmmx mymxm Xác định m để đường thẳng d m song song với mặt phẳng (P) . CÂU5: (2 điểm) 1) Tìm số nguyên dương n sao cho: 243242 210 n n n n n n C CCC . 2) Trong mặt phẳng với hệ toạ độ đề các vuông góc Oxy cho Elíp (E) có phương trình: 1 9 16 2 2 y x . Xét điểm M chuyển động trên tia Ox và điểm N chuyển động trên tia Oy sao cho đường thẳng MN luôn tiếp xúc với (E). Xác định toạ độ của M, N để đoạn MN có độ dài nhỏ nhất. Tính giá trị nhỏ nhất đó. ĐỀSỐ 4 CÂU1: (2 điểm) Cho hàm số: y = 1 3 2 x x 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số. 2) Tìm trên đường thẳng y = 4 các điểm mà từ đó kẻ được đúng 2 tiếp tuyến đến đồ thị hàm số. CÂU2: (2 điểm) 1) Giải hệ phương trình: 0 123 yxyx yxyx 2) Giải bất phương trình: 01 2 1 2 xxln x ln CÂU3: (2 điểm) 1) Giải phương trình: cosx+ cos2x + cos3x + cos4x + cos5x = - 2 1 2) Chứng minh rằng ABC thoả mãn điều kiện 2 2 4 2 2 2 7 B cos A cos C sinCcosBcosAcos thì ABC đều CÂU4: (2 điểm) 1) Trên mặt phẳng toạ độ cho A(1, 0); B(0, 2); O(0, 0) và đường tròn (C) có phương trình: (x - 1) 2 + 2 2 1 y = 1. Viết phương trình đường thẳng đi qua các giao điểm của đường thẳng (C) và đường tròn ngoại tiếp OAB. 2) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với AB = AC = a, SA = a, SA vuông góc với đáy. M là một điểm trên cạnh SB, N trên cạnh SC sao cho MN song song với BC và AN vuông góc với CM. Tìm tỷ số MB MS . CÂU5: (2 điểm) 1) Tính diện tích phần mặt phẳng giới hạn bởi các đường cong: y = x 3 - 2 và (y + 2) 2 = x. 2) Với các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 3 chữ số khác nhau, biết rằng các số này chia hết cho 3. . ĐỀ SỐ 3 CÂU1: (3 điểm) Cho hàm số: y = 1 12 2 x mxm (1) (m là tham số) 1) Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) ứng với m = -1. 2). độ dài nhỏ nhất. Tính giá trị nhỏ nhất đó. ĐỀ SỐ 4 CÂU1: (2 điểm) Cho hàm số: y = 1 3 2 x x 1) Khảo sát sự biến thi n và vẽ đồ thị hàm số. 2) Tìm trên đường thẳng y = 4 các điểm. tỷ số MB MS . CÂU5: (2 điểm) 1) Tính diện tích phần mặt phẳng giới hạn bởi các đường cong: y = x 3 - 2 và (y + 2) 2 = x. 2) Với các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số