Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2008, Article ID 471532, 7 pages doi:10.1155/2008/471532 ResearchArticleApproximationMethodsforCommonFixedPointsofMeanNonexpansiveMappinginBanach Spaces Zhaohui Gu 1 and Yongjin Li 2 1 Department of Foundation, Guangdong Finance and Economics College, Guangzhou 510420, China 2 Institute of Logic and Cognition, Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China Correspondence should be addressed to Yongjin Li, stslyj@mail.sysu.edu.cn Received 17 October 2007; Accepted 2 January 2008 Recommended by Tomonari Suzuki Let X be a u niformly convex Banach space, and let S, T be a pair ofmeannonexpansive mappings. In this paper, it is proved that the sequence of Ishikawa iterations associated with S and T converges to the common fixed point of S and T. Copyright q 2008 Z. Gu and Y. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction and preliminaries Let X be a Banach space and let S, T be mappings from X to X. The pair ofmeannonexpansive mappings was introduced by Bose in 1: Sx − Ty≤ax − y b x − Sx y − Ty c x − Ty y − Sx , 1.1 for all x, y ∈ X, a, b, c ∈ 0, 1, a 2b 2c ≤ 1. The Ishikawa iteration sequence {x n } of S and T was defined by y n 1 − β n x n β n Sx n , x n1 1 − α n x n α n Ty n , 1.2 where x 0 ∈ X, α n ,β n ∈ 0, 1. The recursion formulas 1.2 were first introduced in 1994 by Rashwan and Saddeek 2 in the framework of Hilbert spaces. In recent years, several authors see 2–6 have studied the convergence of iterations to a common fixed point for a pair of mappings. Rashwan has studied the convergence of Mann iterations to a common fixed point see 5 and proved that the Ishikawa iterations converge 2 Fixed Point Theory and Applications to a unique common fixed point in Hilbert spaces see 2. Recently, ´ Ciri ´ c has proved that if the sequence of Ishikawa iterations sequence {x n } associated with S and T converges to p,thenp is the common fixed point of S and T see 7.In4, 6, the authors studied the same problem. In 1, Bose defined the pair ofmeannonexpansive mappings, and proved the existence of the fixed point inBanach spaces. In particular, he proved the following theorem. Theorem 1.1 see 1. Let X be a uniformly convex Banach space and K a nonempty closed convex subset of X, S : K→K and T : K→K are a pair ofmeannonexpansive mappings, and c / 0.Then, i S and T have a common fixed point u; ii further, if b / 0,then a u is the unique common fixed point and unique as a fixed point of each S and T, b the sequence {x n } defined by x 1 Sx 0 ,x 2 Tx 1 ,x 3 Sx 2 , for any x 0 ∈ K, converges strongly to u. It is our purpose in this paper to consider an iterative scheme, which converges to a common fixed point of the pair ofmeannonexpansive mappings. Theorem 2.1 extends and improves the corresponding results in 1. 2. Main results Now we prove the following theorem which is the main result of this paper. Theorem 2.1. Let X be a uniformly convex Banach space, S : X→X and T : X→X are a pair ofmeannonexpansive with a nonempty common fixed points set; if b>0, 0 <α≤ α n ≤ 1/2, 0 ≤ β n ≤ β<1, then the Ishikawa sequence {x n } converges to the common fixed point of S and T. Proof. First, we show that the sequence {x n } is bounded. For a common fixed point p of S and T,wehave Tx − p Tx − Sp ≤ ax − p b x − Tx p − Sp c x − Sp p − Tx ≤ ax − p b x − p p − Tx c x − Sp p − Tx . 2.1 Let L a b c/1 − b − c,bya 2b 2c ≤ 1, it is easy to see that a b c ≤ 1 − b − c,thus 0 ≤ L ≤ 1andTx− p≤Lx − p≤x − p. Similarly, we have Sx − p≤Lx − p≤x − p, x n1 − p 1 − α n x n α n Ty n − p 1 − α n x n − p α n Ty n − p ≤ 1 − α n x n − p α n Ty n − p ≤ 1 − α n x n − p α n L y n − p ≤ 1 − α n x n − p α n 1 − β n x n β n Sx n − p 1 − α n x n − p α n 1 − β n x n − p β n Sx n − p ≤ 1 − α n x n − p α n 1 − β n x n − p α n β n Sx n − p ≤ 1 − α n x n − p α n 1 − β n x n − p α n β n x n − p 1 − α n α n 1 − β n α n β n x n − p x n − p . 2.2 Z. Gu and Y. Li 3 So x n1 − p ≤ x n − p ≤ x n−1 − p ≤ ··· ≤ x 0 − p . 2.3 Hence, {x n } is bounded. Second, we show that lim n→∞ x n − Ty n 0. 2.4 We recall that Banach space X is called uniformly convex if δε > 0 for every ε>0, where the modulus δε of convexity of X is defined by δεinf 1 − x y 2 : x≤1, y≤1, x − y≥ε , 2.5 for every ε with 0 ≤ ε ≤ 2. It is easy to see that Banach space X is uniformly convex if and only if for any x n ,y n ∈ B X {x |x≤1}, x n y n →2 implies x n − y n →0. Assume that lim n→∞ x n − Ty n / 0, then there exist a subsequence {x n k } of {x n } and a real number ε 0 > 0, such that x n k − Ty n k ≥ ε 0 ,k 1, 2, 3, 2.6 On the other hand, for a common fixed point p of T and S,wehave x n k − Ty n k ≤ x n k − p Ty n k − p ≤ x n k − p L y n k − p x n k − p L 1 − β n k x n k β n k Sx n k − p x n k − p L 1 − β n k x n k − p β n k Sx n k − p ≤ x n k − p 1 − β n k L x n k − p β n k L Sx n k − p ≤ 1 1 − β n k L β n k L 2 x n k − p ≤ 1 L x n k − p ≤ 2 x n k − p . 2.7 Thus, x n k − p ≥ 1 2 x n k − Ty n k ≥ ε 0 2 ε 1 > 0. 2.8 Because Ty n − p ≤ y n − p ≤ 1 − β n x n β n Sx n − p 1 − β n x n − p β n Sx n − p ≤ 1 − β n x n − p β n Sx n − p ≤ 1 − β n x n − p β n x n − p ≤ x n − p , 2.9 we know {x n } is bounded, then there exists M>0, such that x n − p≤M. Thus, Ty n − p≤ x n − p≤M. 4 Fixed Point Theory and Applications Furthermore, we have x n k − p x n k − p − Ty n k − p x n k − p x n k − Ty n k x n k − p ≥ ε 1 M > 0. 2.10 From x n k − p x n k − p 1, Ty n k − p x n k − p ≤ L ≤ 1, 2.11 and the fact that X is uniformly convex Banach space, there exists δ>0, such that x n k − p x n k − p Ty n k − p x n k − p ≤ 2 − δ. 2.12 Thus, x n k 1 − p 1 − α n k x n k α n k Ty n k − p ≤ 1 − 2α n k x n k − p α n k x n k − p α n k Ty n k − p ≤ 1 − 2α n k x n k − p α n k x n k − p · x n k − p x n k − p Ty n k − p x n k − p ≤ 1 − 2α n k x n k − p 2 − δα n k x n k − p ≤ 1 − δα n k x n k − p x n k − p − δα n k x n k − p ≤ x n k − p − δαε 1 . 2.13 Using 2.3,weobtainthat x n k 1 − p ≤ x n k − p − δαε 1 ≤ x n k −1 − p − δαε 1 ≤ x n k −2 − p − δαε 1 ≤ ··· ≤ x n k−1 1 − p − δαε 1 ≤ x n k−1 − p − 2δαε 1 . 2.14 So x n k − p ≤ x n k−1 − p − δαε 1 ≤ x n k−2 − p − 2δαε 1 ≤ ··· ≤ x n 1 − p − k − 1δαε 1 . 2.15 Let k→∞,thenwehavex n k − p < 0. It is a contradiction. Hence, lim n→∞ x n − Ty n 0. Third, we show that lim n→∞ x n − Sx n 0. 2.16 Since x n − Sx n ≤ x n − Ty n Ty n − Sx n ≤ x n − Ty n a x n − y n b x n − Sx n y n − Ty n c x n − Ty n y n − Sx n 1 c x n − Ty n a x n − y n b x n − Sx n b y n − Ty n c y n − Sx n 1 c x n − Ty n a 1 − β n x n β n Sx n − x n b x n − Sx n b 1 − β n x n β n Sx n − Ty n c 1 − β n x n β n Sx n − Sx n ≤ 1 c x n − Ty n aβ n x n − Sx n b x n − Sx n bβ n x n − Sx n b x n − Ty n c 1 − β n x n − Sx n 1 b c x n − Ty n aβ n b bβ n c 1 − β n x n − Sx n , 2.17 Z. Gu and Y. Li 5 we have 1 − aβ n − b − bβ n − c 1 − β n x n − Sx n ≤ 1 b c x n − Ty n . 2.18 Let M 1 1 − aβ n − b − bβ n − c1 − β n ,then M 1 1 − aβ n − b − bβ n − c cβ n 1 − b − c − a b − cβ n ≥ a b c − a b − cβ n a b 1 − β n c 1 β n ≥ a b1 − βc>0. 2.19 So x n − Sx n ≤ 1 b c M 1 x n − Ty n . 2.20 Using 2.4,wegetthat lim n→∞ x n − Sx n 0. 2.21 Forth, we show that if the Ishikawa sequence {x n } converges to some point p ∈ X,then p is the common fixed point of S and T.By y n 1 − β n x n β n Sx n , x n1 1 − α n x n α n Ty n , 2.22 we have x n − Ty n 1/α n x n1 − x n . Since {x n } is a convergent sequence, we get lim n→∞ x n − Ty n 0. It is easy to see that x n − y n β n x n − Sx n and Sx n − y n 1 − β n x n − Sx n . On the other hand, y n − Ty n 1 − β n x n β n Sx n − Ty n ≤ 1 − β n x n − Ty n β n Sx n − Ty n . 2.23 By 1.1,weobtain Ty n − Sx n ≤ a x n − y n b x n − Sx n y n − Ty n c x n − Ty n y n − Sx n ≤ aβ n x n − Sx n b x n − Sx n b 1 − β n x n − Ty n bβ n Sx n − Ty n c x n − Ty n c 1 − β n x n − Sx n aβ n b c 1 − β n x n − Sx n b 1 − β n c x n − Ty n bβ n Sx n − Ty n . 2.24 Since x n − Sx n ≤ Sx n − Ty n x n − Ty n , 2.25 we get Ty n − Sx n ≤ b 1 − β n c aβ n b c 1 − β n x n − Ty n bβ n aβ n b c 1 − β n Sx n − Ty n . 2.26 6 Fixed Point Theory and Applications So 1 − b − c − a b − cβ n Ty n − Sx n ≤ b 1 − β n c aβ n b c 1 − β n x n − Ty n . 2.27 Let M 2 1 − b − c − a b − cβ n , Since 0 ≤ β n ≤ β<1, we have M 2 ≥ a b c − a b − cβ n ≥ a b 1 − β n c 1 β n ≥ a b1 − βc>0. 2.28 It is easy to see that b 1 − β n c aβ n b c 1 − β n > 0. 2.29 Note that lim n→∞ x n − Ty n 0, then we get lim n→∞ Sx n − Ty n 0, lim n→∞ y n − Ty n 0. 2.30 So lim n→∞ x n − y n lim n→∞ β n Sx n − x n 0. Let p lim n→∞ x n , then lim n→∞ y n p, lim n→∞ Sx n p, lim n→∞ Ty n p.By1.1,we have Sx n − Tp ≤ a x n − p b x n − Sx n p − Tp c x n − Tp p − Sx n . 2.31 Let n→∞,thenweget p − Tp≤b cp − Tp. 2.32 Since b c<1, it follows that p − Tp 0, that is Tp p. 2.33 Similarly, we can prove that Sp p.Sop is the common fixed point of S and T. Finally, we show that {Sx n } is a Cauchy sequence. For any m, n ∈ N, Sx n − Sx nm ≤ Sx n − Ty nm Sx nm − Ty nm ≤ a x n − y nm b x n − Sx n y nm − Ty nm c x n − Ty nm y nm − Sx n Sx nm − Ty nm ≤ a x n − Sx n Sx n − Sx nm Sx nm − y nm b x n − Sx n y nm − Ty nm c x n − Sx n Sx n − Sx nm Sx nm − Ty nm y nm − Sx nm Sx nm − Sx n Sx nm − Ty nm . 2.34 Since b>0, thus we get 1 − a − 2c>0. Simplify, then we have Sx n − Sx nm ≤ A x n − Sx n B y nm − Ty nm C y nm − Sx nm D Sx nm − Ty nm , 2.35 where A a b c/1 − a − 2c ≥ 0,B b/1 − a − 2c ≥ 0,Ca c/1 − a − 2c ≥ 0, and D 1 c/1 − a − 2c ≥ 0. By 2.16 and 2.30, we know that x n − Sx n −→ 0, y nm − Ty nm −→ 0, Sx nm − Ty nm −→ 0. 2.36 Z. Gu and Y. Li 7 So it is easy to see that y nm − Sx nm →0. Thus, Sx n − Sx nm →0, that is {Sx n } is a Cauchy sequence. Hence, there exists p, such that p lim n→∞ Sx n . We know that p lim n→∞ x n and p is the common fixed point of S and T. This completes the proof of the theorem. Acknowledgment The work was partially supported by the Emphases Natural Science Foundation of Guangdong Institution of Higher Learning, College and University no. 05Z026. References 1 S. C. Bose, “Common fixed pointsof mappings in a uniformly convex Banach space,” Journal of the London Mathematical Society, vol. 18, no. 1, pp. 151–156, 1978. 2 R. A. Rashwan and A. M. Saddeek, “On the Ishikawa iteration process in Hilbert spaces,” Collectanea Mathematica, vol. 45, no. 1, pp. 45–52, 1994. 3 V. Berinde, “On the convergence of the Ishikawa iteration in the class of quasi contractive operators,” Acta Mathematica Universitatis Comenianae, vol. 73, no. 1, pp. 119–126, 2004. 4 P E. Maing ´ e, “Approximation methodsforcommon fixed pointsofnonexpansive mappings in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 469–479, 2007. 5 R. A. Rashwan, “On the convergence of Mann iterates to a common fixed point for a pair of mappings,” Demonstratio Mathematica, vol. 23, no. 3, pp. 709–712, 1990. 6 Y. Song and R. Chen, “Iterative approximation to common fixed pointsofnonexpansivemapping se- quences in reflexive Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications,vol.66,no.3, pp. 591–603, 2007. 7 Lj. B. ´ Ciri ´ c, J. S. Ume, and M. S. Khan, “On the convergence of the Ishikawa iterates to a common fixed point of two mappings,” Archivum Mathematicum, vol. 39, no. 2, pp. 123–127, 2003. . Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2008, Article ID 471532, 7 pages doi:10.1155/2008/471532 Research Article Approximation Methods for Common Fixed Points of. Points of Mean Nonexpansive Mapping in Banach Spaces Zhaohui Gu 1 and Yongjin Li 2 1 Department of Foundation, Guangdong Finance and Economics College, Guangzhou 510420, China 2 Institute of Logic. 73, no. 1, pp. 119–126, 2004. 4 P E. Maing ´ e, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces,” Journal of Mathematical Analysis and Applications,