Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 256796, 8 pages doi:10.1155/2010/256796 ResearchArticleOnaNewHilbert-TypeIntergralInequalitywiththeIntergralinWhole Plane Zheng Zeng 1 and Zitian Xie 2 1 Department of Mathematics, Shaoguan University, Shaoguan, Guangdong 512005, China 2 Department of Mathematics, Zhaoqing University, Zhaoqing, Guangdong 526061, China Correspondence should be addressed to Zitian Xie, gdzqxzt@163.com Received 5 May 2010; Accepted 14 July 2010 Academic Editor: Andrea Laforgia Copyright q 2010 Z. Zeng and Z. Xie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By introducing some parameters and estimating the weight functions, we build anew Hilbert’s inequalitywiththe homogeneous kernel of 0 order and the integral inwhole plane. The equivalent inequality and the reverse forms are considered. The best constant factor is calculated using Complex Analysis. 1. Introduction If fx, gx ≥ 0 and satisfy that 0 < ∞ 0 f 2 xdx < ∞ and 0 < ∞ 0 g 2 xdx < ∞, then we have 1 ∞ 0 f x g x x y dx dy < π ∞ 0 f 2 xdx ∞ 0 g 2 xdx 1/2 , 1.1 where the constant factor π is the best possible. Inequality 1.1 is well known as Hilbert’s integral inequality, which has been extended by Hardy-Riesz as 2. If p>1, 1/p 1/q 1, fx, gx ≥ 0, such that 0 < ∞ 0 f p xdx < ∞ and 0 < ∞ 0 g q xdx < ∞, then we have the following Hardy-Hilbert’s integral inequality: ∞ 0 f x g y x y dx dy < π sin π/p ∞ 0 f p xdx 1/p ∞ 0 g q xdx 1/q , 1.2 where the constant factor π/sinπ/p also is the best possible. 2 Journal of Inequalities and Applications Both of them are important in Mathematical Analysis and its applications 3.It attracts some attention in recent years. Actually, inequalities 1.1 and 1.2 have many generalizations and variations. Equation 1.1 has been strengthened by Yang and others including double series inequalities4–21. In 2008, Xie and Zeng gave anewHilbert-typeInequality 4 as follows. If a>0,b > 0,c > 0,p > 1, 1/p 1/q 1, fx,gx ≥ 0 such that 0 < ∞ 0 x −1−p/2 f p xdx < ∞ and 0 < ∞ 0 x −1−q/2 g q xdx < ∞, then ∞ 0 f x g y x a 2 y x b 2 y x c 2 y dx dy <K ∞ 0 x −1−p/2 f p xdx 1/p ∞ 0 x −1−q/2 g q xdx 1/q , 1.3 where the constant factor K π/a ba cb c is the best possible. The main purpose of this paper is to build anewHilbert-typeinequalitywith homogeneous kernel of degree 0, by estimating the weight function. The equivalent inequality is considered. Inthe following, we always suppose that: 1/p 1/q 1,p>1,r∈ −1, 0,0<α< β<π. 2. Some Lemmas We start by introducing some lemmas. Lemma 2.1. If k 1 : ∞ 0 u −1r ln1 2u cos α u 2 /1 2u cos β u 2 du, k 2 : ∞ 0 u −1r ln1 − 2u cos β u 2 /1 − 2u cos α u 2 du, then k 1 4π sin r β − α /2 sin r α β /2 r sin rπ , k 2 4π sin r β − α /2 sin rπ − r α β /2 r sin rπ , k : ∞ −∞ | u | −1r ln 1 2u cos α u 2 1 2u cos β u 2 du k 1 k 2 4π sin r β − α /2 cos r/2 π −α − β r cos rπ/2 . 2.1 Proof. We have A : ∞ 0 x r−1 ln x 2 2x cos α 1 dx 1 r x r ln x 2 2x cos α 1 ∞ 0 − 2 r ∞ 0 x r x cos α x 2 2x cos α 1 dx : − 2 r B. 2.2 Journal of Inequalities and Applications 3 Setting fzz r z cos α/z 2 2z cos α 1, z 1 −e iα ,z 2 −e −iα , then B 2πi 1 − e 2πri Res f, z 1 Res f, z 2 2πi 1 − e 2πri z r 1 z 1 cos α z 1 − z 2 z r 2 z 2 cos α z 2 − z 1 − π cos rα sin rπ 2.3 we find that A −2B/r 2π cos rα/r sin rπ, then k 1 : ∞ 0 u −1r ln 1 2u cos α u 2 1 2u cos β u 2 du 4π sin r β − α /2 sin r α β /2 r sin rπ , k 2 : ∞ 0 u −1r ln 1 − 2u cos β u 2 1 − 2u cos α u 2 du ∞ 0 u −1r ln 1 2u cos π −β u 2 1 2u cos π −α u 2 du 4π sin r β − α /2 sin r/2 2π −α − β r sin rπ , k ∞ −∞ | u | −1r ln 1 2u cos α u 2 1 2u cos β u 2 du ∞ 0 u −1r ln 1 2u cos α u 2 1 2u cos β u 2 du 0 −∞ −u −1r ln 1 2u cos β u 2 1 2u cos α u 2 du k 1 k 2 4π sin r β − α /2 cos r/2 π −α − β r cos rπ/2 . 2.4 The lemma is proved. Lemma 2.2. Define the weight functions as follow: w x : ∞ −∞ | x | −r y 1−r ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dy, w y : ∞ −∞ y r | x | 1r ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx, 2.5 then wx wyk 4π sinrβ − α/2 cosr/2π −α − β/r cosrπ/2. Proof. We only prove that wxk for x ∈ −∞, 0. Using Lemma 2.1, setting y ux andy −ux, w x 0 −∞ −x −r −y 1−r ln x 2 2xy cos αy 2 x 2 2xy cos βy 2 dy ∞ 0 −x −r y 1−r ln x 2 2xy cos βy 2 x 2 2xy cos αy 2 dy ∞ 0 u −1r ln 1 2u cos α u 2 1 2u cos β u 2 du ∞ 0 u −1r ln 1−2u cos βu 2 1 − 2u cos αu 2 duk 1 k 2 k. 2.6 and the lemma is proved. 4 Journal of Inequalities and Applications Lemma 2.3. For ε>0, and r −max{2ε/p, 2ε/q} ∈ −1, 0, define both functions f, g as follows: f x ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ x −r−1−2ε/p , if x ∈ 1, ∞ , 0, if x ∈ −1, 1 , −x −r−1−2ε/p , if x ∈ −∞, −1 , g x ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ x r−1−2ε/q , if x ∈ 1, ∞ , 0, if x ∈ −1, 1 , −x r−1−2ε/q , if x ∈ −∞, −1 , 2.7 then I ε : ε ∞ −∞ | x | pr1−1 f p xdx 1/p ∞ −∞ | x | qr−1−1 g q xdx 1/q 1, I ε : ε ∞ −∞ f x g y ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx dy −→ k ε −→ 0 . 2.8 Proof. Easily, we get the following: I ε ε 2 ∞ 1 x −1 x −2ε dx 1/p 2 ∞ 1 x −1 x −2ε dx 1/q 1. 2.9 Let y −Y ,using f−x fx, g−xgx and f −x ∞ −∞ g y ln x 2 − 2xy cos α y 2 x 2 − 2xy cos β y 2 dy f x ∞ −∞ g Y ln x 2 2xY cos α Y 2 x 2 2xY cos β Y 2 dY, 2.10 we have that fx ∞ −∞ gy|lnx 2 2xy cos αy 2 /x 2 2xy cos βy 2 |dy is an even function on x, then I ε 2ε ∞ 0 f x ∞ −∞ g y ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dy dx 2ε ∞ 1 x −r−1−2ε/p −1 −∞ −y r−1−2ε/q ln x 2 2xy cos β y 2 x 2 2xy cos α y 2 dy dx ∞ 1 x −r−1−2ε/p ∞ 1 y r−1−2ε/q ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dy dx : I 1 I 2 . 2.11 Journal of Inequalities and Applications 5 Setting y tx then I 1 2ε ∞ 1 x −r−1−2ε/p ∞ 1 y r−1−2ε/q ln x 2 − 2xy cos β y 2 x 2 − 2xy cos α y 2 dy dx 2ε ∞ 1 x −1−2ε ∞ 1/x t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt dx 2ε ∞ 1 x −1−2ε ∞ 1 t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt dx ∞ 1 x −1−2ε 1 1/x t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt dx ∞ 1 t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt 2ε 1 0 t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 ∞ 1/t x −1−2ε dx dt ∞ 1 t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt 1 0 t r−12ε/p ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt ∞ 0 t r−1−2ε/q ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt 1 0 t 2ε/p − t −2ε/q t r−1 ln 1 − 2t cos β t 2 1 − 2t cos α t 2 dt 4π sin r − 2ε/q β − α /2 sin r − 2ε/q 2π −α − β /2 r − 2ε/q sin r − 2ε/q π η ε , 2.12 where lim ε →0 ηε0, and we have I 1 → k 2 ε → 0 . Similarly, I 2 → k 1 ε → 0 . The lemma is proved. Lemma 2.4. If fx is a nonnegative measurable function and 0 < ∞ −∞ |x| p1r−1 f p xdx < ∞,then J : ∞ −∞ y pr−1 ∞ −∞ fx ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx p dy ≤ k p ∞ −∞ | x | p1r−1 f p x dx. 2.13 Proof. By Lemma 2.2,wefindthat ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx p ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 | x | 1r/q y 1−r/p fx y 1−r/p | x | 1r/q dx p 6 Journal of Inequalities and Applications ≤ ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 | x | 1rp−1 y 1−r f p x dx × ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 y 1−rq−1 | x | 1r dx p−1 k p−1 y −rp1 ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 | x | 1rp−1 y 1−r f p x dx, J ≤ k p−1 ∞ −∞ ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 | x | 1rp−1 y 1−r f p x dx dy k p−1 ∞ −∞ ∞ −∞ ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 | x | 1rp−1 y 1−r dy f p x dx k p ∞ −∞ | x | p1r−1 f p x dx. 2.14 3. Main Results Theorem 3.1. If both functions, fx and gx, are nonnegative measurable functions and satisfy 0 < ∞ −∞ |x| p1r−1 f p xdx < ∞ and 0 < ∞ −∞ |x| q1−r−1 g q xdx < ∞,then I ∗ : ∞ −∞ f x g y ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx dy <k ∞ −∞ | x | p1r−1 f p xdx 1/p ∞ −∞ | x | q1−r−1 g q xdx 1/q , 3.1 J ∞ −∞ y pr−1 ∞ −∞ f x ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx p dy <k p ∞ −∞ | x | p1r−1 f p x dx. 3.2 Inequalities 3.1 and 3.2 are equivalent, and where the constant factors k and k p are the best possibles. Proof. If 2.13 takes the form of equality for some y ∈ −∞, 0 ∪ 0, ∞, then there exists constants M and N, such that they are not all zero, and M | x | 1rp−1 y 1−r f p x N y 1−rq−1 | x | 1r a.e. in −∞, ∞ × −∞, ∞ . 3.3 Journal of Inequalities and Applications 7 Hence, there exists a constant C, such that M | x | 1rp f p x N y 1−rq C a.e. in −∞, ∞ × −∞, ∞ . 3.4 We claim that M 0. In fact, if M / 0, then |x| p1r−1 f p xC/M|x| −1 a.e. in −∞, ∞ which contradicts the fact that 0 < ∞ −∞ |x| p1r−1 f p xdx < ∞. Inthe same way, we claim that N 0. This is too a contradiction and hence by 2.13, we have 3.2. By H ¨ older’s inequalitywith weight 22 and 3.2,wehavethefollowing: I ∗ ∞ −∞ y −1r1/q ∞ −∞ f x ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx y 1−r−1/q g y dy ≤ J 1/p ∞ −∞ y q1−r−1 g q ydy 1/q . 3.5 Using 3.2, we have 3.1. Setting gy|y| rp−1 ∞ −∞ fx|lnx 2 2xy cos α y 2 /x 2 2xy cos β y 2 |dx p−1 , then J ∞ −∞ |y| q1−r−1 g q ydy by 2.13, we have J<∞.IfJ 0 then 3.2 is proved. If 0 <J<∞, by 3.1 ,weobtain 0 < ∞ −∞ y q1−r−1 g q y dy J I ∗ <k ∞ −∞ | x | p1r−1 f p xdx 1/p ∞ −∞ | x | q1−r−1 g q xdx 1/q , ∞ −∞ | x | q1−r−1 g q xdx 1/p J 1/p <k ∞ −∞ | x | p1r−1 f p xdx 1/p . 3.6 Inequalities 3.1 and 3.2 are equivalent. If the constant factor k in 3.1 is not the best possible, then there exists a positive h with h<k, such that ∞ −∞ f x g y ln x 2 2xy cos α y 2 x 2 2xy cos β y 2 dx dy <h ∞ −∞ | x | p1r−1 f p xdx 1/p ∞ −∞ | x | q1−r−1 g q xdx 1/q . 3.7 For ε>0, by 3.7,usingLemma 2.3, we have k o 1 <εh ∞ −∞ | x | −1 f p xdx 1/p ∞ −∞ | x | −1 g q xdx 1/q k. 3.8 Hence, we find k o1 <h.For ε → 0 , it follows that k ≤ h, which contradicts the fact that h<k. Hence the constant k in 3.1 is the best possible. Thus we complete the proof of the theorem. 8 Journal of Inequalities and Applications Remark 3.2. For α π/4,β π/3in3.1, we have the following particular result: ∞ −∞ f x g y ln x 2 √ 2xy y 2 x 2 xy y 2 dx dy < 4π sin πr/24 sin 5πr/24 r sin πr/2 ∞ −∞ | x | p1r−1 f p xdx 1/p ∞ −∞ | x | q1−r−1 g q xdx 1/q . 3.9 References 1 G. H. Hardy, J. E. Littlewood, and G. P ´ olya, Inequalities, Cambridge University Press, London, UK, 1952. 2 G. H. Hardy, “Note ona theorem of Hilbert concerning series of positive terms,” Proceedings of the London Mathematical Society, vol. 23, no. 2, pp. 45–46, 1925. 3 D. S. Mitrinovi ´ c, J. E. Pe ˇ cari ´ c, and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, vol. 53, Kluwer Academic, Boston, Mass, USA, 1991. 4 Z. Xie and Z. Zeng, “A Hilbert-type integral inequality whose kernel is a homogeneous form of degree −3,” Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 324–331, 2008. 5 Z. Xie and Z. Zeng, “A Hilbert-type integral inequalitywitha non-homogeneous form and a best constant factor,” Advances and Applications in Mathematical Science, vol. 3, no. 1, pp. 61–71, 2010. 6 Z. Xie and Z. Zeng, “The Hilbert-type integral inequalitywiththe system kernel of -λ degree homogeneous form,” Kyungpook Mathematical Journal, vol. 50, pp. 297–306, 2010. 7 B. Yang, “A newHilbert-type integral inequalitywith some parameters,” Journal of Jilin University, vol. 46, no. 6, pp. 1085–1090, 2008. 8 Z. Xie and B. Yang, “A newHilbert-type integral inequalitywith some parameters and its reverse,” Kyungpook Mathematical Journal, vol. 48, no. 1, pp. 93–100, 2008. 9 Z. Xie, “A newHilbert-typeinequalitywiththe kernel of -3μ-homogeneous,” Journal of Jilin University, vol. 45, no. 3, pp. 369–373, 2007. 10 Z Xie and J. Murong, “A reverse Hilbert-typeinequalitywith some parameters,” Journal of Jilin University, vol. 46, no. 4, pp. 665–669, 2008. 11 Z. Xie, “A new reverse Hilbert-typeinequalitywitha best constant factor,” Journal of Mathematical Analysis and Applications, vol. 343, no. 2, pp. 1154–1160, 2008. 12 B. Yang, “A Hilbert-typeinequalitywitha mixed kernel and extensions,” Journal of Sichuan Normal University, vol. 31, no. 3, pp. 281–284, 2008. 13 Z. Xie and Z. Zeng, “A Hilbert-typeinequalitywith parameters,” Natural Science Journal of Xiangtan University, vol. 29, no. 3, pp. 24–28, 2007. 14 Z. Zeng and Z. Xie, “A Hilbert’s inequalitywitha best constant factor,” Journal of Inequalities and Applications, vol. 2009, Article ID 820176, 8 pages, 2009. 15 B. Yang, “A bilinear inequalitywitha −2-order homogeneous kernel,” Journal of Xiamen University, vol. 45, no. 6, pp. 752–755, 2006. 16 B. Yang, “On Hilbert’s inequalitywith some parameters,” Acta Mathematica Sinica, vol. 49, no. 5, pp. 1121–1126, 2006. 17 I. Brneti ´ candJ.Pe ˇ cari ´ c, “Generalization of Hilbert’s integral inequality,” Mathematical Inequalities and Application, vol. 7, no. 2, pp. 199–205, 2004. 18 I. Brneti ´ c, M. Krni ´ c, and J. Pe ˇ cari ´ c, “Multiple Hilbert and Hardy-Hilbert inequalities with non- conjugate parameters,” Bulletin of the Australian Mathematical Society, vol. 71, no. 3, pp. 447–457, 2005. 19 Z. Xie and F. M. Zhou, “A g eneralization of aHilbert-typeinequalitywiththe best constant factor,” Journal of Sichuan Normal University, vol. 32, no. 5, pp. 626–629, 2009. 20 Z. Xie and X. Liu, “A newHilbert-type integral inequality and its reverse,” Journal of Henan University, vol. 39, no. 1, pp. 10–13, 2009. 21 Z. Xie and B. L. Fu, “A newHilbert-type integral inequalitywitha best constant factor,” Journal of Wuhan University, vol. 55, no. 6, pp. 637–640, 2009. 22 J. Kang, Applied Inequalities, Shangdong Science and Technology Press, Jinan, China, 2004. . < π sin π/p ∞ 0 f p xdx 1/p ∞ 0 g q xdx 1/q , 1.2 where the constant factor π/sinπ/p also is the best possible. 2 Journal of Inequalities and Applications Both of them are important in Mathematical Analysis and its applications 3.It attracts. Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 256796, 8 pages doi:10.1155/2010/256796 Research Article On a New Hilbert-Type Intergral Inequality. Inequality with the Intergral in Whole Plane Zheng Zeng 1 and Zitian Xie 2 1 Department of Mathematics, Shaoguan University, Shaoguan, Guangdong 512005, China 2 Department of Mathematics, Zhaoqing University,