1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Thread Technologies by JS.Noho_2 doc

10 110 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,39 MB

Nội dung

associated ‘mass eect’  9  meant  that  the  dies  could be  through-hardened – which gave them an overall ‘bulk  hardness’  of  greater  than  HSS.  Today,  basically  dies  are either manufactured from micro-grained HSS, or  coated cemented carbide.  Solid dies (Fig. 99a), do not have any means to com - pensate for die wear, whereas, their split-die nut coun - terparts (Fig. 99b-le), can be manually-adjusted. is  adjustment of the die is achieved by turning a centrally  mounted  grub-screw  in  the  stock  body,  which  along  with the  xing screws can be made  to  open,  or close  on the sha to be threaded. In this manner, achieving  the  correct  thread  tolerance, or  ‘play’  for  the  desired  tment  of  its  associated  mating  nut.  It  is  also  usual  practice, to use a suitable die lubricant, to facilitate in  the thread’s production while improving surface nish  and prolonging the die’s life – as excessive friction oc - curs during this type of threading process.  e  major  disadvantage  of  using  the  solid-type  threading dies is that they either have to be unscrewed  from  the  threaded  workpiece,  or  rewound  from  the  thread,  using  up  unproductive  time  elements,  this  being  particularly  important  for  large  batch  runs,  or  in  a  continuous  production  environment.  Self-open- ing dies 10   (i.e.  not  depicted)  have  been  utilised  for  many years on: capstan and turret lathes, single- and  multi-spindle automatics and so on, for cutting exter - nal  threads.  Several  types  of  self-opening  die  heads  are  available,  ranging  from:  radial,  tangential,  or  cir - cular  arrangement  of  the  multi-point  cutting  inserts  and  thread  chasers.  In  most  cases,  it  is usual  for  the  9  ‘Mass eect’ , is related to the component’s ‘ruling section’. For  example, if the part has a large cross-sectional area, when it is  quenched from the hardening temperature zone (i.e. this can  be  found  from  its  associated  thermal equilibrium diagram –  for the present), it will not exceed the ‘critical cooling velocity’ and only a partial martensitic state occurs. is is because the  quench media used  could  not suciently  drastically  reduce  the part’s temperature with an incomplete atomic transforma- tion occurring  and in so doing,  the  heat-treated component  will retain some austenite in the matrix. For this reason, large  holes (e.g. designed into in through-hardened Sine-bars) are  oen strategically designed in these larger component regions.  Moreover, in many cases the larger component cross-sections  are  reduced,  so  that  the  ‘mass eect’ does  not  occur  –  apart  from the obvious factor of relieving weight, etc.  10   Self-opening dies, are oen termed ‘read chasing die heads’ ,  whereas  in  reality  a  thread  is  only  ‘chased’  once  the  main  thread form has initially been cut. us chasing is employed  to give the required t and nish to the nal thread form. die-head  cutting  elements  to be  preset  to  take  rstly  a  roughing  cut,  followed  by  nishing  cut/chasing  of  the threads down the bar. At the end of the threaded  section,  these  self-opening  dies  will  automatically  open  and  can  then  be  speedily  withdrawn  from  the  threaded  portion  of  the  bar.  ese  self-opening  dies  can be set to give the correct amount of tolerance, con - trolling  the  ‘play’  on  the  thread.  Moreover,  it  is  pos - sible to t dierent thread sizes and forms into the die  head, for more universal threading applications. Both  the  radial  and  tangential  threading  elements,  create  less  tool  ank  contact  and  frictional  rubbing  on  the  cut thread.  5.5 Thread Turning – Introduction On conventional engine-/centre-lathes, a single-point  thread cutting tool (Fig. 100), has a synchronised and  combined  linear  and rotary  kinematic  motion  for  its  Figure 100. External and internal threading tool holders and in-serts. [Courtesy of Seco Tools] . Threading Technologies  threading insert. is insert is connected to the lead- screw (i.e normally having a very accurately-hardened  and  ground  Acme  form)  which  is  precisely  synchro - nised  to  that  of  the  headstock’s  rotation.  On  a  CNC  turning  centre,  or  similar,  this  linear  motion  is  reli - ant on the precision and accuracy of the recirculating  ballscrew  coupled  to  the  programmed  cutterpath.  In  this manner, the threading insert being rigidly held in  either the tool post, or turret, generates a spiral groove  which when at full depth creates a screwthread of the  desired  pitch  and  helix  angle.  During  successive  tra - verse  feeding  passes (i.e.  to prescribed  depths)  along  the  workpiece  the  thread  is  cut.  A  typical  thread  is  routinely produced on CNC turning centres, using its  xed/canned  cycles  (i.e.  ‘bespoke  soware’).  During  these  automated  threading  passes,  the  tool  precisely  traverses down the bar’s length, is rapidly withdrawn  and  moved  back  to  its  start  point,  then  fed  more  deeply  beginning  another  threading  pass  down  the  same helical groove, this process being repeated until  full thread depth/prole is accomplished. In order to  obtain a consistent thread pitch on the workpiece, the  feedrate along  the threaded portion must exactly co - incide.  e  thread  form  is  dependent  upon  the  pro - led geometry of the thread cutting insert. In order to  achieve the required  nal thread  prole,  the  feedrate  must be considerably larger  than is normally utilised  for conventional turning operations.  Any  V-form  thread  point  angle  geometry,  is  not  an  ideal  edge  shape  for  the  production  of  machined  threads if the insert is fed in normal to the workpiece’s  axis  of  rotation  (i.e.  radial/plunge-fed).  Chip  control  here will be compromised, as each ank of the V-form  thread gets successively deeper. is narrowing of the  Figure 101. Screwcutting tech- niques on turning centres and suggest- ed methods for improved chip control. [Courtesy of Sandvik Coromant] .  Chapter  chips from  each formed  and  angled  ank  face  of the  V-shaped threading insert (i.e. see Fig. 103ai), creates  high  localised  forces  and stresses,  which  will  tend  to  tear,  rather  than  cut  the  nal  V-form  thread  prole.  In order to minimise these potential high force/shear  components when radial/plunge-cutting a thread, the  radial  infeed  passes  are  progressively  reduced  with  increasing  thread  depth.  e  techniques  of  V-form  thread production by radial infeed techniques will be  the subject of the next section. .. Radial Infeed Techniques Utilising  single-point  threading  inserts  (i.e.  see  Fig.  104, where a typical sequence of threading passes are  depicted  –  as  the  V-form  thread  prole  is  partially  formed), several dierent techniques of thread turning  are utilised today, they include: • Radial infeed (Fig. 101 – top-le) – being the most  common method, where the threading insert is fed  at 90° to the workpiece’s rotational axis. e mate - rial  being  removed  on  both  sides  of  the  tool’s  V- form anks – producing a ‘so’ chip-forming action  giving uniform wear to both anks of the insert, NB  Here  the  V-form  threading  insert  geometry  forms  both  anks  with  lighter  cuts  as  the  thread  depth progressively increases. • Flank infeed (Fig. 103aii)  – is oen  known as the  ‘half-angle screwcutting technique’ ,  mainly  utilised  on  a  conventional  engine-/centre-lathe.  Here,  the  le-hand  ank  is  formed  by  the  tool’s  V-form  ge- ometry, while the right-hand thread ank is  gener- ated  by  successive  passes,  as  the  tool  is  fed  down  the  face  at  half  the  thread’s  included  angle.  Chip  control is improved with  all ank infeed techniques  over  ‘plunging’ ,  enabling  the  chip  to  be  vectored  away  from  the  previously  cut  surface  (i.e  see  Fig.  101  –  middle, where the chips can be steered away  from the ank), NB  is  ‘half-angle technique’ producing  the  thread’s right ank, is generated by the tool’s right- hand ank – which due to frictional eects, creates   here  a  more  pronounced  wear  rate  on  the cutting  edge resulting in a poor surface nish. • Modied ank infeed (Fig. 101top-middle le) – in  this cutting action, the tool is fed to depth in suc - cessive passes at a slightly reduced  angle (i.e. nor - mally  ranging  from  1°  to  5°).  is  screwcutting  technique provides an improved ank surface n - ish – compared to the two previous methods, par - ticularly on the either less hard, or for more ductile  workpiece materials.  Modied ank infeed methods  are recommended  rather than radial infeeding for  larger  threads,  due  to  contact  on  this  long  ank  length which would otherwise result in vibrational  eects  being  superimposed  (i.e  chatter)  onto  the   nal thread form, NB  If  the  workpiece  material’s  characteristics  include  potential  machining  work-hardening  problems,  then  ank  infeed  techniques  should  be  avoided,  • Incremental feeding 11  (Fig. 101 – top-middle right) –  if the thread form is very large, then the incremen - tal thread feeding strategy is normally utilised.  ese  same  radial  infeed  thread  production  tech - niques are used for the manufacture of  internal threads (Fig.  102a),  by  either  ‘Pull-threading’ –  depicted  in  ‘A’ , where the thread form originates from the inter- nal undercut, as opposed to  ‘Push threading’ – shown  in ‘ B’ – being toward say, an undercut. In both cases  of thread production, the modied ank infeed tech - niques are employed. NB  reads  manufactured  by  method  ‘A’  allow  for  excellent  evacuation  of  the  chips  –  being  an  ideal  technique for ‘blind holes’. Conversely, in case ‘ B’ , the  swarf  would  otherwise  simply  ‘bird’s nest’ 12  in  such  a  hole,  unless  a  through  hole  is  present,  as  is  depicted  in ‘ B’.  If thread forms are based upon square threads, or their  modied  trapezoidal  forms:  Buttress,  or  Acme  (i.e.  see Fig. 95i – for examples of these thread proles), it  11  Incremental feeding,  is  sometimes  termed  the  ‘Alternating ank’ technique, it has the advantage of imparting a uniform  wear to both of the cutting insert’s V-form anks, thereby sig- nicantly increasing the tool life.  12  ‘Bird nesting’ , is a term that refers to the rotational entangle- ment and build-up of work-hardened swarf at the bottom of  a  ‘blind  hole’ ,  which  can  create  some  problems  in  internal  thread production.  Threading Technologies  Figure 102. External and internal threading operations and the eect that the helix has as the diameter changes – for a given pitch. [Courtesy of Sandvik Coromant] .  Chapter  is  advisable to pre-machine  the thread with a groov- ing  tool  –  with  the  tool’s width  being  the  equivalent  of the thread’s root spacing dimension. Not only does  this  pre-machining  strategy of employing  a  grooving  tool  reduce  the  number  of  threading  passes  to  just  ank nishing, the tool can have a chip-breaker pres - ent during the rough machining stage to eectively re - move the bulk stock and its associated swarf.  .. Thread Helix Angles, for Single-/Multi-Start Threads e fundamental basis underpinning any thread form  is the  helix angle, which in this case is denoted by the  Greek symbol ‘ ϕ’ – as schematically illustrated in Fig.  102b.  One  way  of  describing  how  the  helix  angle’s  geometry  is  created,  is  to  imagine  that  a  right-angle  triangle  is  formed  by  a  thin  wire  which  has  been  unwound  from  a  parallel  cylindrical  sha,  whose   diameter  equates to its ‘eective  diameter’. en, this  unwound wire length (i.e. πD) would be its circumfer - ence, acting as a base for the triangle (Fig. 102b). e  perpendicular height of right-angled triangle is equal  to the  pitch 13  ‘p’ , or the lead 14  – in the case of a single- start thread. e  angle that the hypotenuse makes with  the  base is its helix angle ‘ϕ’. From the schematic dia- gram in Fig. 101c, if the pitch ‘p’ remains constant and  the diameter ‘ D 1 ’ is decreased (i.e. ‘D 1 ’ → ‘D 3 ’), then the  helix angle proportionally increases (i.e. ‘ ϕ 1 ’ → ‘ϕ 3 ’).  In the case of  multi-start threads, the pitch and the  lead  dier, as shown in Fig. 106c. In this illustration for  the cutting the triple-start thread, the usual approach  to its manufacture is for the three successive starts to  be  individually  completed  to  form  the  ‘triple-start’ ,  with  each  start  being  angularly  displaced  120°  with  respect to each other. Alternatively, if one start is be - gun with the rst threading pass, then the second start  is similarly machined and so  on – for the number of  starts required, then the threading insert is advanced  13  ‘Pitch’ – can be dened as the distance between correspond- ing points on adjacent threads, normally expressed in metric  units as ‘mm’ , or in Imperial units as threads per inch. 14  ‘Lead’  –  being  dened  as  the  axial distance through  which  a  point on  the  thread  advances during  one revolution of  the  thread ×. is helix angle ‘ϕ’ is also known as its ‘lead angle’ NB  Both  the  pitch and the  lead are identical for  single-start threads. to  a  deeper  thread depth  and the  process is repeated  until the full thread form has been completed. As pre - viously  mentioned,  the  pitch  is  not  the  same  as  the  lead for multi-start threads and the lead can be easily  calculated as follows: Lead = np Where: n = number of starts, p = pitch (mm). For example, in the case of the triple-start thread illus - trated in Fig. 106c, for say, a V-form metric thread of  6 mm pitch, then the  lead will be: 3 × 6 mm = 18 mm. NB  is means that if a mating nut was rotated down  this triple-start thread, it would be linearly displaced  by 18 mm in  one revolution – allowing the nut to be  rotated in, or out quickly (i.e. because of its larger he - lix  angle),  but  to  the  detriment  of  an  increased  axial  loading.  Although  this  load  is  distributed  across  the  contact between all the multi-start threads. .. Threading Insert Inclination e  threading  insert  is  carefully  ground  by  the  tool- ing manufacturer to provide the correct thread prole.  is insert must operate with a radial cutting rake of  0°,  if  the  correct  thread  form  is  to  actually  imparted  to the formed thread (Fig. 103). e lead angle of the  ank  surface  varies  at  dierent  points  between  the  crest and the root of the thread, increasing toward the  root – the opposite is true on an internal thread. Due  to  this  eect, the actual cutting  rake  varies along the  insert’s  cutting  edge,  becoming  more  positive on  the  leading edge and more negative on the trailing edge – the  closer it gets to the thread’s root. In order to minimise  such  threading  insert  rake  angle  variation  the  insert  is inclined 15 , so that its top face is perpendicular to a  15  reading shimming – the tool holder is delivered tted with  a shim that gives an eective side inclination angle of 1° – be- ing the most common type. Although shims can be changed  in degree increments from: –2° to 4°, by simply tting a dier- ent shim angle. Likewise, internal threading tool holder incli- nations can be changed, by tting such shims. Threading Technologies  line indicating the mean lead angle ‘λ’ 16  – measured at  the pitch diameter (Fig. 103b). is insert inclination  16  reading insert top face geometry – instead of a at/straight  top face to the insert,  today, it  is oen  angled (i.e. shown in  Fig. 103bi – bottom le), which enables improved control of  the developing chip. produces  a  symmetrical  side  clearance  (i.e.  depicted  in  Fig. 103bi – bottom  le diagram) and  is important  in  ensuring  a  uniform  edge  wear  on  both  anks,  re - sulting in increased insert useful life. e fact that this  small threading insert inclination, causes one ank to  cut slightly below, while the other cutting marginally  above the centre-line of the workpiece – for a at top  faced  insert,  is  of no  practical  signicance at normal  lead  angles  for  either  the  function  of  cutting,  or  the  Figure 103. Thread for- mation by radial and ank infeeds, to-gether with threading insert inclina- tion angles. [Courtesy of Sandvik Coromant] .  Chapter  thread’s  prole.  Further,  a  small  deviation  from  the  exact symmetry required in the insert’s inclination is  also  acceptable,  without  too  obvious  a  disadvantage.  us, the inclined insert can be utilised to cut threads  of between 0° and 2° with an inclination of 1° and, still  produce a satisfactory thread. is thread production  technique  is  only  true  for  the  normal,  symmetrical  threads  (i.e.  ‘V-forms’);  in  the  case  of  ‘saw-toothed’  Figure 104. External threading with an indexable insert – chip formation in a partially-formed/generated thread for a single pass along the bar. [Courtesy of Sandvik Coromant] . Threading Technologies  threads (e.g. Buttress), it should be borne in mind that  the ‘straight-anked’ ones – those with angles between  0° to 7° – in particular, oer side clearances which may  be adequate. In Fig. 103c a graph depicting the thread - ing insert inclination angles is given for diering helix  angles, with the helix angle calculation derived as fol - lows: tan  λ = P / D × π Where:  λ = Helix angle (°),  P = Pitch (mm, or threads per inch),  D = Eective pitch diameter (mm, or inches). Metric  threading  inserts  are  characterised  by  their  thread  prole  and  the  associated  pitch,  being  ex - pressed  in  millimetres.  e shape and  size of  the  in - sert  will  determine  the  completed  thread  form.  One  threading  insert  can  be  utilised  to  cut  all  threads  of  this prole and size, irrespective of their thread diam - eter,  or whether  they are:  right-  or,  le-hand,  single-  or, multi-start (i.e. see Figs. 105b and 106a, for internal  and external le- and right-hand threading congura - tions, respectively).  In the case of internal thread inclination angles, the  tool must be ‘canted-over’ at the angle ‘ λ’ (i.e. see Fig.  103bii), so that the cutting edge is situated normal to  the  centreline.  Oen,  the  toolholder  shank  has  to  be  ground-away  to  avoid  fouling  on  the  internal  hole’s  diameter as shown in Fig. 105a. Here (Fig. 105a), the  distance from the tool tip to the rear of the toolholder  shank – denoted  by the dimension ‘ D’ , is relieved to  ‘D mod ’ to avoid fouling on the curvature of the hole, as  the tool is fed-out of the thread depth at the end of its  successive ‘threading passes’.  .. Thread Profile Generation e prole of a thread can be cut by several dierent  techniques and diering types of inserts – depending  whether ‘topping’ the is required. For example, if a V- form proled threading insert is utilised (Fig. 106bi),  no  actual  machining  is  undertaken  of  the  thread’s  top. In this situation, it is necessary to ensure that the  Figure 105. Internal threading operations for right- and left-hand threads. [Courtesy of Sandvik Coromant] .  Chapter  Figure 106. External threading operations and insert forms. [Courtesy of Sandvik Coromant]. Threading Technologies  pre-machined  workpiece  –  when  producing  external  threads – has the exact size for the major diameter re - quired,  conversely,  for  internal  threads  this  must  be  the minor diameter that is pre-machined. Due to the  sharpness of the thread produced by this technique, it  is oen necessary to  ‘chase the thread’ 17  aerward.  In  the  case  of  proled  threading  inserts,  the  com- plete  thread  prole  is  cut  from  a  slightly  oversized blank. Usually, three distinct proling inserts could be  used in thread production, these are: • V-form (Fig. 106bi) – has the ability to machine a  range  of thread proles, with the nose radius pre - cisely and accurately ground for the smallest pitch  to  be  cut.  As  a  result  of  this  tightly  ground  nose  radius,  the  insert’s  life  is  shorter  than  with  other  proling  insert  versions,  as  its  size  has  not  been  optimised  for  individual  thread  geometries.  From  an economic viewpoint,  due to the V-form  prol - ing  insert’s  ability  to  cut  a  wide  variety  of  thread  pitches, less inserts need to be stocked, • Full-form (Fig.  106bii)  – has  the  ability  to  prole  the thread’s crest and is therefore manufactured to  exactly the specication of the required thread pro - le.  Such  full-prole  inserts  simplify  thread  pro - duction,  as  no  prole  is  deeper  than  its  specica - tion, allowing them to be a stronger insert thereby  resulting in improved tool life, • Multi-point form (Fig. 106biii) – with this multiple- pointed proling insert, the rst tooth roughs-out  the thread and is therefore slightly set back in com - parison to the second tooth on the insert, which acts  almost like a ‘chaser’ which fully-forms and blends  the various thread proling elements upon the nal  threading pass. Cutting conditions need to be rigid  and stable for this type of insert to operate correctly  – due to its longer cutting edge length. It is essential  to ensure that the recommended in-feed values are  used, to ensure that cutting forces are balanced for  both of the cutting teeth. One advantage of utilising  these multi-point threading inserts is that the num - ber  of  threading  passes  can be  reduced  by  almost  50% – as it cuts deeper than its counterparts, when  compared to the single-proling insert forms. 17  ‘Chasing a thread’ , refers to using a chasing tool with the ex- act thread prole which is utilised to follow the thread along,  thereby deburring and forming the desired prole simultane- ously. .. Threading Turning – Cutting Data and Other Important Factors Whatever  type  of  thread  to  be  cut,  whether  it  is  a:  V-form, Multi-start, Trapezoidal, or Tapered, it is gen - erally quite dicult to vary such factors as the: cutting  speed,  feed  and,  to  a  lesser  extent  the  D OC ,  indepen- dently of one another, without certain consideration of  some limiting factors. e typical limitations imposed  when cutting a thread, will now be discussed.  Cutting Speed Typical  limitations  imposed  by  the  action  of  cut- ting  a  thread  include,  reducing  the  cutting  speed  by  25%  –  compared  to  ordinary  turning,  as  the  insert’s  shape  limits  heat  dissipation.  If  a  high  a  chip  load  occurs  due  too  great  a  cutting  speed  selected,  then  the  cutting  temperature  can  approach  that  of  say,  a  cemented  carbide’s  original  sintering  temperature.  As  a  result  of  this  elevated  temperature,  the  binder  phase  may  soen,  causing  potential  cutting  edge  plastic  deformation.  e  remedy  here  seems  quite  easy, simply reduce the cutting speed, but this may in - crease the risk of BUE. is BUE may cause the chips  to  become  welded onto  the  cutting edge  from which  they are shortly fragmented and continuously carried  away  –  taking  a  minute  portions  of  the  insert’s  edge  along  with  them.  e  problem  can  be  minimised  by  specifying a tougher grade of carbide for the threading  insert,  or  choosing  a  multi-coated  insert.  Normally,  the cutting speeds for any threading operation should  not be less than 40 m min –1 , when machining with any  cemented carbides.  Feed and D OC e feed in millimetres per revolution, must coincide  with the desired pitch, or lead – when cutting multi- start threads. Hence, if the cutting speed is modied,  the  feedrate  will  also  have  to  be  increased,  or  de - creased,  so that  the  feed  per  revolution  is  constantly  maintained.  So,  the  critical  factor  here  is  to  achieve  some  form  of  control  over  the  D OC when  threading.  Each threading pass along the workpiece causes an in - creasingly larger portion of the insert’s cutting edge to  become in contact in the threading operation, accord - ingly,  tool  forces  will  proportionally  increase.  If  the  D OC   is  kept  constant  during  several  passes,  the  chip-  Chapter  . tech - niques are used for the manufacture of  internal threads (Fig.  102a),  by either  ‘Pull-threading’ –  depicted  in  ‘A’ , where the thread form originates from the inter- nal undercut, as opposed to  ‘Push threading’ – shown  in ‘ B’ – being toward say, an undercut. In both cases  of thread production, the modied ank infeed tech - niques are employed. NB . – the tool holder is delivered tted with  a shim that gives an eective side inclination angle of 1° – be- ing the most common type. Although shims can be changed  in degree increments from:  2  to 4°, by simply tting a dier- ent shim angle. Likewise, internal threading tool holder incli- nations can be changed, by tting such shims. Threading Technologies  line indicating the mean lead angle ‘λ’ 16  – measured at  the pitch diameter (Fig. 103b). is insert inclination  16 . the  contact between all the multi-start threads. .. Threading Insert Inclination e  threading  insert  is  carefully  ground  by the  tool- ing manufacturer to provide the correct thread prole.  is insert must operate with a radial cutting rake of  0°, 

Ngày đăng: 21/06/2014, 22:20