1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điều khiển dự báo với tập hữu hạn các giá trị đầu vào (fcs mpc) cho nghịch lưu đa mức cầu h nối tầng

132 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC BÁCH KHOA HÀ NỘI Phó Bảo Bình ĐIỀU KHIỂN DỰ BÁO VỚI TẬP HỮU HẠN CÁC GIÁ TRỊ ĐẦU VÀO (FCS-MPC) CHO NGHỊCH LƯU ĐA MỨC CẦU H NỐI TẦNG LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA Hà Nội - 2023 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC BÁCH KHOA HÀ NỘI Phó Bảo Bình ĐIỀU KHIỂN DỰ BÁO VỚI TẬP HỮU HẠN CÁC GIÁ TRỊ ĐẦU VÀO (FCS-MPC) CHO NGHỊCH LƯU ĐA MỨC CẦU H NỐI TẦNG Ngành: Mã số: Kỹ thuật điều khiển tự động hóa 9520216 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS Trần Trọng Minh PGS.TS Vũ Hoàng Phương Hà Nội, 2023 LỜI CAM ĐOAN Tôi                Hà Nội, ngày Người hướng dẫn khoa học tháng năm 2023 Tác giả luận án i Lời cảm ơn Lu nhng kt qu nghiên c hc Bách khoa Hà Ni Sau mt thi gian hc tp nghiên c i s ng dn ca thy: PGS.TS Trn Tr i hc Bách khoa Hà Ni Tôi xin bày t lịng bii v ch dn tn tình ca thng dn, nhia s, quan công vic ln i sng, to mu ki  tơi hồn thin lun án n Tôi trân trng cy cô thun t côn Truyn, thy phịng C9-ng làm tp rm m, chuyên nghing vi nhng góp ý chân thành, sâu sc c, TS Nguynh, TS Nguyn Anh Tân nhng  giúp rt nhiu vic cng c thêm kin thc chun mơn hồn thin  na lun án ca Tơi xin c Giám hiu, Khoa T ng hóa, n-n t; Ba Giám hiu, Phịng ào to - i hc Bách khoa Hà Nu n li kin thu nht v nhiu mt công vic hc tp t Tôi chân thành c anh ch em Nghiên cu sinh ca Khoa T ng hóa, Vin K thuu khin T ng hóa, nh  h tr tơi Tơi s ln nh n nhóm sinh viên K61, K62, K63 thuc PE-Lab hc tp nghiên cu ti phòng C9-203 vi hai em Nguyn Mnh Tun  (K61) thuc APES-Lab H nh tr rt nhiu vic nghiên cu,tri n khai thc nghim S ng viên tu kin ca Ban Giám hiu, nhim Kng nghip ti b n k thu Xây dng Hà Ni ngun ng lc rt ln giúp vc chng hc tp nghiên cu Sau cùng, xin gi li cc nhn nh tôi, nhi bn thân thit  m hoàn thành lun án Hà Nội, tháng năm 2023 Tác gilun án Phó Bo Bình ii MỤC LỤC LỜI CAM ĐOAN …………………………………………………………………… I LỜI CẢM ƠN ……………………………………………………………………… II MỤC LỤC ………………………………………………………………………… III DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT VI DANH MỤC CÁC BẢNG .VIII DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ IX MỞ ĐẦU ………………………………………………………………………………1 CHƯƠNG TỔNG QUAN 1.1 Khái quát v nghiên cu 1.1.1 Nghc cu H ni tng (CHB) 1.1.2 u khiu trúc CHB 1.1.3 u khin d báo da mơ hình MPC 10 1.1.4 c bit phù hp vu trúc CHB h truyn ng IM 13 1.1.5 Nguyên lý thc hin FCS-MPC 14 1.2 V ca FCS-MPC 15 1.2.1 Sai l 16 1.2.2 Multistep MPC 16 1.3 ng dng m- xây dng b u khin ANN-MPC nhm thc nghim thut toán multistep MPC 19 Kt lu 21 CHƯƠNG FCS-MPC VỚI MỤC ĐÍCH TRIỆT TIÊU SAI LỆCH TĨNH CHO NLĐM CẤU TRÚC CHB NỐI TẢI ĐỘNG CƠ IM 22 2.1 u khin d báo FCS-MPC 22 2.2 u khin d báo FCS-MPC kt hp khâu tích phân 24 2.3 u khin d báo FCS-MPC cho mch ngh CHB ng d 26 2.3.1 Cu khin d báo FCS-ng cho mch ngh c CHB ni t 26 2.3.2 Nguyên lý hong cu trúc CHB 27 iii 2.3.3 Mơ hình trng b (IM) 2.3.4 Cu khin d báo FCS-MPC kt hp khâu tích phân cho mch nghc CHB, ng d 2.4 Kt qu mô phng kim chng 38 2.4.1 Kin 2.4.2 King CMV tt 2.4.3 King  tr ca h thng CHƯƠNG THUẬT TOÁN MULTISTEP MPC CHO NGHỊCH LƯU ĐA MỨC CẤU TRÚC CHB NỐI TẢI ĐỘNG CƠ IM 49 3.1 Cu khin h thu trúc CHB ni t dng thut toán Multistep MPC 49 3.2 Thit k b u khin vu khin mu MPC 50 3.2.1 Mô hình h thng 50 3.2.2 Mơ hình d báo 51 3.2.3 Hàm mc tiêu 51 3.2.4 Thut toán gii mã mt cu SDA 52 3.3 Nâng cao t tính tốn Multistep MPC v-best SDA cho u trúc CHB ni t 58 3.3.1 Cu khin 58 3.3.2 Thut toán gii mã mt cu K-best SDA 59 3.3.3 Mô phng kim chng phn mm Matlab/Simulink 64 CHƯƠNG XÂY DỰNG HỆ THỐNG THỰC NGHIỆM VÀ KẾT QUẢ 75 4.1 Thc nghim kim chng thut toán multistep MPC v-best SDA cho bin tc cu trúc CHB 75 4.1.1 u kin thc nghim 75 4.1.2 Triu khin FPGA 80 4.1.3 Kt qu thc nghim 81 4.2 Thc nghim kim chng thut toán Multistep MPC s dng ANN, áp dng cho nghc cu trúc CHB 84 4.2.1 u khin ANN-MPC 84 4.2.2 Cu trúc m-ron ANN 86 4.2.3 Thc hi-MPC 90 4.2.4 Mô phng kim chng Matlab/Simulink 95 iv 4.2.5 Mơ hình thc nghim 98 4.2.6 Kt qu c mơ hình thc nghim 101 KẾT LUẬN VÀ KIẾN NGHỊ 105 DANH MỤC CÁC CƠNG TRÌNH Đà CƠNG BỐ CỦA LUẬN ÁN 106 TÀI LIỆU THAM KHẢO 107 PHỤ LỤC ………………………………………………………………………… 115 v Danh mục ký hiệu chữ viết tắt Từ viế t tắt Dạng đầy đủ tiếng Anh Ý nghĩa  B bii  Nghc  n t công sut  Truyn MV Medium Voltage Trung áp PES Power Electronic System H thn t công su MLI Multilevel Inverter B nghc VSI Voltage Source Inverter Nghn áp IGBT Insulated Gate Bipolar Transistor Tng cc ly CHB Cascaded H-Bridge Cu H ni tng NPC Neutral Point Converter u trúc diode kp MMC Modular Multilevel Converters  ng module hóa FC Flying Capacitor T bay LV Low Voltage  n áp thp FACTS Flexible AC Transmission System H thng truyn ti xoay chi linh hot STATCOM Static Synchronous Compensator Thit b ng b  HVDC High Voltage DC  n chi n áp cao DC Direct Current  n mt chiu IM Induction Motor ng rotor lng sóc PID Proportional Integral Derivative n vi  tích phân t l B u FOC Field Oriented Control  u khin ta t thông SMC Sliding Mode Control  u khit AIC Artificial Intelligence Control  u khin trí tu nhân to vi AI Artificial Intelligence Trí tu nhân to MPC Model Predictive Control u khin d báo da theo m hình CCS-MPC Continuous Control Set CCSMPC MPC tu khin li tc FCS-MPC Finite Control Set MPC MPC tu khin h h n MIMO Multi Input, Multi Output Nhiu vào, nhi u RHC Receding Horizon Control u khin khong d báo d min thi gian OPP Optimized Pulse Patterns Các mu xung t ESA Exhaustive Search Algorithm Thut tốn tìm kim tồn din SDA Sphere Decoding Algorithm Thut tốn gii mã mt cu DSP Digital Signal Processor B x lý tín hiu s PWM Pulse Width Modulation u ch  rng xung SVM Space Vector Modulation u ch vector không gian DTC Direct Torque Control u khin trc tip mômen FPGA Field Programmable Gate Array Mng cng lp trình c d ng DPC Direct Power Control iu khin trc tip công su VOC Direct Voltage Control iu khin trc tip n áp THD Total Harmonic Distortion Tng méo sóng hài CMV Common-mode Voltage n áp common-mode ANN Artificial Neural Network M-ron nhân to vii Danh mục bảng Bng 2.1 Bng th hin tt 37 Bng 2.2 Thông s mch lc b u khin 38 Bng 2.3 Thông s n 39 Bng 2.4 Kch bn mô phng 39 Bng thi tham s m vi 35% Bng 2.6 S ln chuyn mc pha A 44 Bng 3.1 Quá trình thc hin thut toán 63 Bng 3.2 Thông s  64 Bng 3.3 Thông s mch lc b u khin 65 Bng 3.4 Kch bn mô phng 65 Bng 3.5 So sánh s ng nút kim tra 69 Bng 4.1 Bng thông s hun luyn 92 Bng 4.2 c ma trn 93 Bng 4.3 Tru khin van Bng 4.4 Thông s mô phng ANN-MPC 95 Bng 4.5 Bng ch nh d liu hun luyn 96 Bng 4.6 Tài nguyên s dng FPGA 101 Bng 4.7 Thông s thc nghim 102 viii Dịng tcHình  4A 4.36 ( ) có dng sóng hình sin, cho thy s nh ca h thng Vi kt qu n áp mc tn ti thun tr có b lc LC, có th thy thut tốn ANN-MPC có kh ng dng c mơ hình thc t mà khơng b rào cn bi khng tính tốn ln phc tmultistep MPC Kết luận chương y, n dng thành công b thc nghim c  xut Các kt qu thc nghim chng thành công thu xut chng minh tính kh thi trin khai thc t Tuy nhiên, vu kin v trang thit b, kt qu thc nghim có cht  i b nhiu 104 Kết luận kiến nghị  toán FCS---   - - ng du khin multistep MPC nhm nâng cao ch u khin b bii nghcu trúc CHB 11 mc ni ti  thut toán K-best SDA nhm gim khng tính tốn MPC; Ci thin t x lý thi gian thc ca FCS-c bng mng ANN x Nhng hn ch ca lung nghiên cu tip theo -     -    105 Danh mục cơng trình cơng bố luận án H.M.Tran, T.Q Dang, T.D Le, T.T Do, B.B Pho, H.P Vu, H.T Nguyen (2021), Phương pháp điều khiển MPC đa bước cải tiến cho biến đổi CHB làm việc độc lập,i ngh - Trin lãm quc t ln th v u khin T ng hố; VCCA-2021 Phó Bảo Bình, Nguyn Hu Phúc, Trn Trng Minh (2022), Cải thiện phương pháp điều khiển dự báo cho nghịch lưu đa mức cầu H nối tầng hệ truyền động động khơng đồng bộ, khin T ng hóa, vol 3, No.1, pp 4150 Phó Bảo Bình, c Th, ng Quang Tin, Trn Trng Minh  u khin d c vi hiu qu t b bi   c cu H ni tng cp ngu   u khin T ng hóa, vol 3, No.2, pp 918 B.B Pho          model predictive control for three-phase induction motor drive system considering the common- Power Electronics and Drive Systems, vol 12, no 4, pp 22512260 (Scopus Q3) C.M Van, S Duong-Minh, Duc Tran-Huu, B.B Pho, Phuong Vu An improved method of model predictive current control for multilevel cascaded Hbridge inverters,Journal of Electrical Engineering, vol 72, no.1, 1-11 (SCIE Q3 B.P Bao, C Mai-Van, T.M Tran, Phuong Vu Model predictive control for distributed MPPT algorithm of cascaded H-Bridge multilevel grid-connected PV inverters,       (SCIE Q3) B.B Pho, T.M Hoan, M.T Trong, Phuong Vu  An Artificial Neural Network-Based Model Predictive Control Of Cascaded H-Bridge Multilevel Inverter, no (2022) (ESCI Q3) 106 Tài liệu tham khảo [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] High-power converters and A Second EdiEd., IEEE Press, Wiley       Multistep finite control predictive control for power electronics,     Electronics, vol 29, no 12, pp 68366846 S Kouro, M Malinowski, K Gopakumar, et al Recent advances and industrial applications of multilevel converters,    Industrial Electronics, vol 57, no 8, pp 25532580 R.T Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga  Advanced Multilevel Converters and Applications in Grid Integration, A survey o inverters,    trial Electronics, vol 57, no 22192230 R.J and M.N T A Meynard, H Foch, P Thomas, J Courault (2002), Multicell converters: basic concepts and industry applications,  Transactions on Industrial Electronics, vol 49, no 5, pp 955964 M Malinowski, K Gopakumar, J Rodriguez, et al  A survey on cascaded multilevel inverters,     vol 57, no 7, pp 21972206 F Martinez-Rodrigo, D Ramirez, A.B Rey-Boue, et al (2017), Modular multilevel converters: Control and applications, L Zhang, D Zhang, T Hua, et al Reliability evaluation of modular multilevel converter based on Markov model,     Systems and Clean Energy, vol 7, no 5, pp 13551363, Springer Singapore R Mali, N Adam, A Satpaise, et al  Performance Comparison of Two Level Inverter with Classical Multilevel Inverter Topologies, Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, pp 17, IEEE M Vijeh, M Rezanejad, E Samadaei, et al  A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View, IEEE Transactions on Power Electronics, vol 34, no 10, pp 94799502, IEEE Classification, terminology, and application of the modular  multilevel cascade converter (MMCC),     Electronics, vol 26, no 11, pp 31193130 Modular multilevel converters: A topologies, modulation, modeling and control schemes,    International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017, vol 2017-Janua, pp 431440 107 [14] Tr    Nghiên cứu phương pháp điều chế điều khiển biến đổi bán dẫn công suất đa mức kiểu module hóa,Lun án ti i hc Bách khoa Hà Ni [15] Y Okazaki, M HagiwaraA speed-sensorless star method of an induction motor driven by a modular multilevel cascade inverter (MMCI-DSCC),       ECCE 2013, vol 1, no MMCI, pp 14731480 [16] M   Modular multipulse rectifier transformers in symmetrical cascaded H-bridge medium voltage drives,   on Power Electronics, vol 27, no 2, pp 698705 [17]   Neutral shif Applications Magazine, vol 9, no 6, pp 4049 [18] L Sun, W Zhenxing, M Weiming, et al  Analysis of the DC-link capacitor current of power cells in cascaded H-bridge inverters for highvoltage drives,lectronics, vol 29, no 62816292 [19] A Marzoughi, R Burgos, D Boroyevich, et al  Investigation and comparison of cascaded H-bridge and modular multilevel converter topologies for medium-voltage drive application,   (Industrial Electronics Conference), pp 15621568 [20] S Kouro, M.A Perez, J Rodriguez, et al Model Predictive Control: MPC’s Role in the Evolution of Power Electronics,   Electronics Magazine, vol 9, no 4, pp 821 [21] J Rodríguez, R.M Kennel, S Member, et al  High-Performance Control Strategies for Electrical Drives : An Experimental Assessment, 59, no 2, pp 812820 [22] Multistep Model Predictive Control for Power Electronics and Electrical Drives (PhD Thesis), [23] S Vazquez, J Rodriguez, M Rivera, et al Model Predictive Control for Power Converters and Drives: Advances and Trends, on Industrial Electronics, vol 64, no 2, pp 935947 [24]    Power Electronics and Motor Drives - Advances and Trends, [25] M Ciobotaru, F Iov, P Zanchetta, et al  Study and analysis of a natural reference frame current controller for a multi-level H-bridge power converter,   - IEEE Annual Power Electronics Specialists Conference, pp 29142920 [26] Predictive control of po and electrical drives, [27] T Geyer (201 A comparison of control and modulation schemes for medium-voltage drives: Emerging predictive control concepts versus field oriented control,       108 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] ECCE 2010 - Proceedings, no May, pp 28362843    A comparison of control and modulation schemes for medium-voltage drives: Emerging predictive control concepts versus PWMbased schemes, pp 13801389 F.C.  Sliding mode control of an induction mo Power Electronics and Variable Speed Drives, 2000 Eighth International Conference on (IEE Conf Publ No 475), no 475, pp 1819 B.B Pho, T.M Tran, M.L Nguyen, et al (2020)Discrete-Time Quasi Sliding Mode Control of Single-phase T-type Inverters for Residential PV Applications,      ICAMechS, vol 2020-Decem    A simple direct-torque fu permanent magnet synchronous motor driver,    Automation, 2004    Neural network applications in power electronics and motor drives - An introduction and perspective,    Industrial Electronics, vol 54, no 1, pp 1433       Neural network Design, Networks in a Softcomputing Framework, pp 1566 Active power filter control network technologies,  -Electric Power Applications, vol 150, no 2, pp 139145    Predictive Control of Three Phase AC/DC Converters (PhD Thesis),    An improved deadbeat control for UPS us disturbance observers, no 1, pp 206212       A Deadbeat Current Controller f Oriented Induction Motor Drives,     89, no 12, pp 877887 A predictive controller for the vector of AC machines fed from a switched voltage source,  Power Electronics Conference, IPEC, Tokyo, pp 16651675 R.P Aguilera, P Acuna, Y Yu, et al Predictive Control of Cascaded H-Bridge Converters under Unbalanced Power Generation,  Transactions on Industrial Electronics, vol 64, no 1, pp 413    Model Predictive control of high power converters and industrial drives, A Linder, R Kanchan, R Kennel, et al  Model-Based Predictive Control of Electric Drives, 109 [42] Multistep direct model predic for power electronics Part 1: Algorithm,     Congress and Exposition, ECCE 2013, pp 11541161 [43]        Control,ondon [44] Model predictive control: Recent developments and future promise,2986 [45]       Process Control Dynam Engineering Practice, vol 11, pp 733764 [46]      A survey of indu predictive control technology,  pp 733764 [47] J Rodríguez, J Pont, C.A Silva, et al Predictive current control of a voltage source inverter, no 1, pp 495503 [48] On switch-mode DC-DC converters,     Philadelphia, PA, USA, March 25-27, 2004 Proceedings, pp 342356, Hybrid Systems: Computation and Control [49]         Power Electronics and Drives: Basic Concepts, Theory, and Methods,  531, Advanced aEd., Springer International Publishing [50] S Vazquez, J.I Leon, L.G Franquelo, et al Model predictive control: A review of its applications in power electronics, Magazine, vol 8, no 1, pp 1631 [51] J Rodriguez, F Member, M.P Kazmierkowski, et al State of the Art of Finite Control Set Model Predictive Control in Power Electronics, pp 115 [52] C Mai-Nghiên cứu điều khiển hệ truyền động biến tần đa mức có tính đến cố van bán dẫn,Lun án tii hc Bách khoa Hà Ni [53] Energy, environment, and advances in power electronics, IEEE International Symposium on Industrial Electronics, vol 1, no February 2000 [54] G.ARecent advances and applications of power electronics and motor drives-Advanced and intelligent control techniques,  Proceedings (Industrial Electronics Conference), no May, pp 3739 [55]    High-efficiency variable-speed electric motor drive technologies for energy savings in the US residential sector, the International Conference on Optimisation of Electrical and Electronic Equipment, OPTIM, pp 14031414 110 [56] M Van Chung, D.T Anh, P Vu, et al  Hardware in the loop cosimulation of finite set-model predictive control using fpga for a three level CHB inverter, vol 11, no 4, pp 17191730 [57] A Linder and R Kennel (2 Direct model predictive control - A new direct predictive control strategy for electrical drives,   Conference on Power Electronics and Applications, vol 2005 [58] S Aurtenechea Larrinaga, M.A Rodríguez Vidal, E Oyarbide, et al (2007), Predictive control strategy for DC/AC converters based on direct power control, 1271 [59] Stead control set model predictive control,    Electronics Conference), pp 17761781 [60]  Control of Electrical Drives and Power Converters using Matlab/Simulink, WILEY [61]  predictive control with improved steady-state performance,  Transactions on Industrial Informatics, vol 9, no 2, pp 658667 [62] L Wang, C.T Freeman, S Chai, et al Predictive-repetitive control with constraints: From design to implementation, vol 23, no 7, pp 956967, Elsevier Ltd [63]         Electronics Selected Problems, [64] R.O Ramirez, J.R Espinoza, C.R Baier, et al  Finite-State Model Predictive Control with Integral Action Applied to a Single-Phase Z-Source Inverter,Topics in Po vol 7, no 1, pp 228239 [65] Performance of multistep fin set model predictive control for power electronics,    Power Electronics, vol 30, no 3, pp 16331644 [66] A study of multistep m direct current control for dynamic drive applications with high switching frequency, [67] J Scoltock, T Ge   A comparison predictive control schemes for MV induction motor drives, on Industrial Informatics, vol 9, no 2, pp 909919 [68] D DC-DC boost converters using model predictive control based on enumeration,      Conference and Exposition, EPE-PEMC 2012 ECCE Europe, pp 18 111 [69] T Geyer, N Oikonomou, G Papafotiou, et al Model predictive pulse pattern control, Conversion Innovation for a Clean Energy Future, ECCE 2011, Proceedings, no October, pp 33063313 [70] P Karamanakos, T Geyer, N Oikonomou, et al  Direct model predictive control: A review of strategies that achieve long prediction intervals for power electronics, 3243 [71] Pontryagin’s max for the optimal control problems with multipoint boundary conditions, Abstract and Applied Analysis, vol 2015, no [72] R Baidya, R.P Aguilera, P Acuna, et al Enabling Multistep Model Predictive Control for Transient Operation of Power Converters, Journal of the Industrial Electronics Society, vol 1, no August, pp 284297 [73] A C Model Predictive Control Strategy for Linear Systems with Integer Inputs, IEEE Transactions on Control Systems Technology, vol 24, no 4, pp 1463 1471 [74]         efficient long-Horizon direct model predictive control for transient operation, 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, vol 2017-Janua, no October, pp 46424649 [75] T Dorfling, H Du Toit Mouton, T Geyer, et al Long-Horizon FiniteControl-Set Model Predictive Control with Nonrecursive Sphere Decoding on an FPGA, 7531 [76] Algorithm and implementation of t Sphere decoding for MIMO detection,      Communications, vol 24, no 3, pp 491503 [77] A radius adaptive K-Best early termination: Algorithm and VLSI architecture,    Circuits and Systems I: Regular Papers, vol 57, no 9, pp 24762486 [78] Minimizing communication sort, pp 459474 [79] E Monmasson, M Hilairet, G Spagnuolo, et al  System-on-Chip  FPGA Devices for Complex Electrical Energy Systems Control,  Industrial Electronics Magazine, vol 16, no 2, pp 5364 [80] E Zafraratia, S Vazquez, A.M Alcaide, et al  K-Best Sphere Decoding Algorithm for Long Prediction Horizon FCS-MPC, EEE Transactions on Industrial Electronics, vol 69, no 8, pp 75717581 [81] K El Hamidi, M Mjahed, A El Kari, et al Quadcopter attitude and 112 [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] altitude tracking by using improved PD controllers, Nonlinear Dynamics and Control, vol 1, no 3, p 287 A Study of Artificial Neural Netw Training Algorithms for Classification of Cardiotocography Signals,  Eren University Journal of Science and Technology, vol 7, no 2, pp 93103    Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, H Wu, Y Zhou, Q Luo, et al Training feedforward neural networks using symbiotic organisms search algorithm, Neuroscience, vol 2016 K.J Hunt, D Sbarbaro, R Zbikowski, et al  Neural networks for control systems-A survey, D Gueye, A Ndiaye, and A   Adaptive Controller Based on Neural Network Artificial to Improve Three-phase Inverter Connected to the Grid,       Applications, ICRERA 2020, pp 7277 A Elhor and O Soares (Grid-connected PV System with a ModifiedNeural Network Control,     Research-IJRER, vol 12, no 2, pp 10131022  based on artificial neural network for finite set MPC operated 3L-NPC converter,   - IEEE Applied Power Electroni Conference and Exposition - APEC, vol 2019-March, pp 7782, IEEE       Weighting Factor Desig Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach, 11, pp 88708880, IEEE S Vazquez, D Marino, E Zafra, et al  An Artificial Intelligence Approach for Real-Time Tuning of Weighting Factors in FCS-MPC for Power Converters, 1198711998 I.S Mohamed, S Rovetta, T.D Do, et al  A neural-network-based model predictive control of three-phase inverter with an output LC Filter, IEEE Access, vol 7, pp 124737124749 A Bakeer, I.S Mohamed, P.B Malidarreh, et al An Artificial Neural Network-Based Model Predictive Control for Three-Phase Flying Capacitor Multilevel Inverter, P Cortes, A Wilson, S Kouro, et al  Model predictive control of multilevel cascaded H-bridge inverters,     Electronics, vol 57, no 8, pp 26912699 NguyLý thuyết điều khiển tuyến tính, xut bn Khoa hc K thut 113 [95] A Set Model Predictive Current Control with Model Parameter Mismatch in a Three-Phase Inverter, no 5, pp 31003107 [96] Điều khiển vector truyền động điện xoay chiều ba pha, 2nd Ed., Nhà xut bn Bách Khoa Hà Ni [97] J Rodríguez, J Pontt, P Correa, et al A new modulation method to reduce common-mode voltages in multilevel inverters, Industrial Electronics, vol 51, no 4, pp 834839 [98] F Grimm, P Kolahian, Z Zhang, et al A Sphere Decoding Algorithm for Multistep Sequential Model-Predictive Control,    Industry Applications, vol 57, no 3, pp 29312940 [99] D Wang, Z.J Shen, X Yin, et al Model Predictive Control Using Artificial Neural Network for Power Converters,    Industrial Electronics, vol 69, no 4, pp 36893699 [100] A scaled conjugate gradient algorithm for fast supervised learning, 6, no 4, pp 525533 114 Phụ lục A1 Thiết kế tham chiếu Tín hiu tham chiu U*[ku kin áp comm bng 0: T U*[k] êơu*[ k]T u* [ k 1]T u* [ k N 1]Tẳ Trong ú: u* ( ) ê « cos(T ) s « V L « § 2S à ôcos ă Ts Vdc ô â ô ĐS à ôsin ă Ts â3 ằ sin(Ts ) ằ ĐS à ằ sină Ts ằ â3 ạằ Đ 2S Ãằ cosă Ts ằ â3 ẳ Đ ê § 1 V · º ª V  Zs ă * ôă ằ ô VT ă di sdq (l ) ô âVTs VTr ằ* r ô ( ) l i sdq ă dt ô ằ ô V Đ Ã 1 V ằ ă ô Z Z s ă ô ă ô ằ T T V V V â s ạẳ r â k 1; ; k N` · Vº ¸ V »» ' ¸ ψ rdq (l ) ¸ V » ¸ » ¸ VTr ẳ A2 Chng minh (3.6) k] b [ kU]  *[Yk] OCMV [Γx JN [k] k]  *[Uk] Odc [U 2 k]  [Εuk 1]2 [SU Khai tri J N [k ] T T Y *º ¼ Γx Y* b U 2 >b U @êơx Y *ẳb >U ê x ơ@ ^ Odc SU ^ OCMV U 2 2 T SU Eu >SU @Eu T T êơU*ẳ U U* [ k]U[ k]T Eu 2 ` U* [ k] 2 ` 2 Mt khác, ta có: T T >bb U[ k] @ êơx Y *ẳ b >U ê x Y *[ k] ẳ @ T T ° (kt qu s thc) ®>SU @Eu SUEu * T * T êơU ẳ U ê U U ẳ Do kt qu s thc nên hàmN Jtr thành: 115 T êơx Y *ẳ x b U 2 >b U @ Y* J N[ k] ^ Odc SU ^ 2 SU Eu  Eu ` T OCMV U 2 êơU*ẳ U U* JN [ k] ^bU O 2 dc OdcSU Eu T 2 T 2 ` { êơU ẳ U} * x ` T T * x @ b U êơY *ẳ SU OCMV U 2 b U > T  OCMV T * T * Y 2  Odc Eu 2 *  O CMV U 2 T JN [ k ] U êơb b Odc S S OCMV I NẳU T êơb T* x b TY*  Odc S TEu  OCMVU *º¼ U ê * x Y* ôơ 2 Odc Eu 2  OCMV U* º» ¼ Vit li vi dng rút gn c (3.6): U[ k]T WU[ k] +2 F[ k] T U[ k]  [ε k] J N[ k] Trong đó: W b Tb  Odc ST S  OCMV I3 N F[ k] b T* x[ k]b T Y*[ k] Odc ST Eu[ k 1] OCMV U*[ k] 2 * * ε[k ] ª« * x[ k] Y [ k]  Odc Eu [ k 1] OCMV U [ k] 2º» ¬ ¼ A3 Chứng minh (3.10) wxT Bx Ta có công thc v o hàm ma trn: wx wJ N wU 0 WU[ k ] 2F[ k] 0o (B B T )x k] U[ k] U uc [  W 1F[ k] A4 Chứng minh (3.13) (3.14) Ta có: JN [ k] U[ k]T WU[ k] +2 F[ k]T U[ k]  ε[ k] Thêm hng s c: JN [ k] U T [ k]WU[ k] 2F[ k] T U[ k] F T[ k]W 1F[ k] ε[ k] JN [ k] U T [ k]WU[ k] U T[ k]WW 1F[ k] F T[ k]U[ k] F T[ k]W 1F[ k] JN [ k ] U [ k]W F T T U[ k]  W 1F[ k] [ k]   nên W T ; JN [k ] có giá tr mt hng s Do W ma tri xngW 116 J N [ k] J N [ k] U[ k] W F[ k]  U [ k]W F [ k]( W ) W  U [ k] ( W F[ k]) W U[ k]  W F[ k]  T T T 1 1 T 1 T 1 Thay U uc W 1F [ k] ta chng minh c (3.13)  U[ k]  J N [ k] H TH U ; ThayW uc [ k] HU J N[k] J N[k] uc Uuc[ k] T W U [ k]  Uuc[ k]  [ k] vào (3.13) c (3.14): T U[ k] U uc[ k] HT H U[ k] U uc[ k] HU[ k] HU uc[ k]  HU[ k] U uc[ k] A5 Bảng quy đổi vector trạng thái sang nút Output layer Vector ka kb kc 0 0 Nút Vector ka kb kc O1 -1 0 O2 -2 -1 O3 -2 O4 -1 0 0 Nút Vector Nút ka kb kc O27 -2 O56 O28 -2 O57 1 O29 -2 O -2 O30 -2 O59 O5 -1 O31 -2 O60 O6 -1 -1 O32 -2 -1 O61 -1 O7 -1 O33 -1 -1 O8 -2 O34 -1 O9 -2 O35 1 -1 O10 -2 O36 -1 O11 -1 O37 -1 -1 O12 -2 -2 O38 -1 O13 -1 -2 O39 -1 1 O14 -2 O40 -1 O15 -2 O41 -1 -1 O16 2 -2 O42 -1 O17 -2 O43 -1 O18 -2 O44 -1 O19 -1 -2 O45 117 -1 -1 O20 -2 -2 O46 -1 O21 -2 -1 O47 -2 O22 -2 O48 1 -2 O23 -2 O49 -2 O24 -2 2 O50 -1 O25 -2 O51 -1 -1 O26 -2 O52 118

Ngày đăng: 11/12/2023, 06:42

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN