Edited by Gernot Friedbacher and Henning Bubert Surface and Thin Film Analysis Tai ngay!!! Ban co the xoa dong chu nay!!! Related Titles Watts, J F., Wolstenholme, J An Introduction to SIMS for Surface and Thin Film Analysis 2011 ISBN: 978-0-470-09132-6 Guo, J (ed.) X-Rays in Nanoscience Spectroscopy, Spectromicroscopy, and Scattering Techniques 2010 ISBN: 978-3-527-32288-6 Birkholz, M Thin Film Analysis by X-Ray Scattering 2006 ISBN: 978-3-527-31052-4 Bordo, V G., Rubahn, H.-G Optics and Spectroscopy at Surfaces and Interfaces 2005 ISBN: 978-3-527-40560-2 Edited by Gernot Friedbacher and Henning Bubert Surface and Thin Film Analysis A Compendium of Principles, Instrumentation, and Applications Second, Completely Revised and Enlarged Edition The Editors Prof Dr Gernot Friedbacher Institute of Chemical Technology and Analytics Getreidemarkt /164 1060 Vienna Austria Dr Henning Bubert Augsburger Weg 51 59439 Holzwickede Germany All books published by Wiley-VCH are carefully produced Nevertheless, authors, editors, and publisher not warrant the information contained in these books, including this book, to be free of errors Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at © 2011 Wiley-VCH Verlag & Co KGaA, Boschstr 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages) No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers Registered names, trademarks, etc used in this book, even when not specifically marked as such, are not to be considered unprotected by law Composition Toppan Best-set Premedia Ltd., Hong Kong Printing and Binding Cover Design Adam Design, Weinheim Printed in the Federal Republic of Germany Printed on acid-free paper ISBN: 978-3-527-32047-9 V Contents Preface to the First Edition XVII Preface to the Second Edition XIX List of Contributors XXI Introduction John C Rivière and Henning Bubert Part One 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 2.4 2.4.1 2.4.2 2.4.3 2.5 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 Electron Detection X-Ray Photoelectron Spectroscopy (XPS) Henning Bubert, John C Rivière, and Wolfgang S.M Werner Principles Instrumentation 12 Vacuum Requirements 12 X-Ray Sources 13 Synchrotron Radiation 16 Electron Energy Analyzers 16 Spatial Resolution 18 Spectral Information and Chemical Shifts 19 Quantification, Depth Profiling, and Imaging 21 Quantification 21 Depth Profiling 23 Imaging 26 The Auger Parameter 27 Applications 28 Catalysis 28 Polymers 30 Corrosion and Passivation 31 Adhesion 32 Superconductors 34 Semiconductors 35 VI Contents 2.7 Ultraviolet Photoelectron Spectroscopy (UPS) 38 References 39 Auger Electron Spectroscopy (AES) 43 Henning Bubert, John C Rivière, and Wolfgang S.M Werner Principles 43 Instrumentation 44 Vacuum Requirements 44 Electron Sources 44 Electron-Energy Analyzers 45 Spectral Information 47 Quantification and Depth Profiling 51 Quantification 51 Depth Profiling 53 Applications 54 Grain Boundary Segregation 54 Semiconductor Technology 56 Thin Films and Interfaces 58 Surface Segregation 58 Scanning Auger Microscopy (SAM) 61 References 64 3.1 3.2 3.2.1 3.2.2 3.2.3 3.3 3.4 3.4.1 3.4.2 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.5 4.6 5.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.4 Electron Energy-Loss Spectroscopy (EELS) and Energy-Filtering Transmission Electron Microscopy (EFTEM) 67 Reinhard Schneider Principles 68 Instrumentation 70 Qualitative Spectral Information 72 Low-Loss Excitations 74 Ionization Losses 77 Fine Structures 79 Quantification 83 Imaging of Element Distribution 85 Summary 88 References 89 Low-Energy Electron Diffraction (LEED) 93 Georg Held Principles and History 93 Instrumentation 94 Qualitative Information 96 LEED Pattern 96 Spot Profile Analysis 100 Applications and Restrictions 100 Quantitative Structural Information 101 Contents 5.4.1 5.4.2 5.4.3 5.4.4 5.5 5.5.1 5.5.2 Principles 101 Experimental Techniques 102 Computer Programs 104 Applications and Restrictions 105 Low-Energy Electron Microscopy 106 Principles of Operation 106 Applications and Restrictions 108 References 108 Other Electron-Detecting Techniques 111 John C Rivière Ion (Excited) Auger Electron Spectroscopy (IAES) 111 Ion Neutralization Spectroscopy (INS) 111 Inelastic Electron Tunneling Spectroscopy (IETS) 112 Reference 113 6.1 6.2 6.3 Part Two 7.1 7.2 7.2.1 7.2.2 7.2.2.1 7.2.2.2 7.3 7.4 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 8.1 8.1.1 8.1.2 8.1.3 Ion Detection 115 Static Secondary Ion Mass Spectrometry (SSIMS) 117 Heinrich F Arlinghaus Principles 117 Instrumentation 119 Ion Sources 119 Mass Analyzers 120 Quadrupole Mass Spectrometers 120 Time-of-Flight Mass Spectrometry (TOF-MS) 121 Quantification 123 Spectral Information 125 Applications 127 Oxide Films 128 Interfaces 128 Polymers 131 Biosensors 133 Surface Reactions 134 Imaging 135 Ultra-Shallow Depth Profiling 137 References 138 Dynamic Secondary Ion Mass Spectrometry (SIMS) 141 Herbert Hutter Principles 141 Compensation of Preferential Sputtering 141 Atomic Mixing 142 Implantation of Primary Ions 142 VII VIII Contents 8.1.4 8.1.5 8.1.6 8.2 8.2.1 8.2.1.1 8.2.2 8.2.2.1 8.2.2.2 8.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.4.1 8.4.4.2 8.4.4.3 8.5 8.6 8.6.1 8.6.2 8.7 8.7.1 8.7.2 8.8 8.9 8.9.1 8.9.2 8.9.3 Crater Bottom Roughening 142 Sputter-Induced Roughness 142 Charging Effects 142 Instrumentation 143 Ion Sources 143 Duoplasmatron 144 Mass Analyzer 144 Magnetic Sector Field 144 Detector 145 Spectral Information 146 Quantification 147 Relative Sensitivity Factors 147 Implantation Standards 147 Metal Ceside (MCs+) Ions 148 Theoretical Models 148 Electron Tunneling Model 148 Broken Bond Model 148 Local Thermodynamic Equilibrium LTE 148 Mass Spectra 149 Depth Profiles 149 Dual-Beam Technique for TOF-SIMS Instruments 152 Molecular Depth Profiles 152 Imaging 152 Scanning SIMS 152 Direct Imaging Mode 153 Three-Dimensional (3-D)-SIMS 154 Applications 156 Implantation Profiles 156 Layer Analysis 157 3-D Trace Element Distribution 158 References 159 Electron-Impact (EI) Secondary Neutral Mass Spectrometry (SNMS) 161 Michael Kopnarski and Holger Jenett Introduction 161 General Principles of SNMS 162 Postionization via Electron Impact 163 Suppression of Residual Gas and Secondary Ions Instrumentation and Methods 166 Electron Beam SNMS 166 Plasma SNMS 167 Spectral Information and Quantification 170 Element Depth Profiling 172 9.1 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.4 9.5 164 Contents 9.6 Applications 174 References 175 10 Laser Secondary Neutral Mass Spectrometry (Laser-SNMS) 179 Heinrich F Arlinghaus Principles 179 Nonresonant Laser-SNMS 179 Resonant Laser-SNMS 179 Experimental Set-Up 180 Ionization Schemes 181 Instrumentation 182 Spectral Information 183 Quantification 183 Applications 184 Nonresonant Laser-SNMS 184 Resonant Laser-SNMS 186 References 189 10.1 10.1.1 10.1.2 10.1.3 10.1.4 10.2 10.3 10.4 10.5 10.5.1 10.5.2 11 11.1 11.2 11.3 11.4 11.5 11.6 11.6.1 11.6.2 11.6.3 11.6.4 11.7 11.8 12 12.1 12.2 12.3 12.3.1 12.3.2 12.4 12.5 Rutherford Backscattering Spectroscopy (RBS) Leopold Palmetshofer Introduction 191 Principles 191 Instrumentation 194 Spectral Information 194 Quantification 196 Figures of Merit 197 Mass Resolution 197 Sensitivity 198 Depth Resolution 198 Accuracy 198 Applications 198 Related Techniques 201 References 201 Low-Energy Ion Scattering (LEIS) 203 Peter Bauer Principles 203 Instrumentation 206 LEIS Information 208 Energy Information 208 Yield Information 208 Quantification 211 Applications of LEIS 211 References 214 191 IX X Contents 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 14 14.1 14.2 14.3 14.4 15 15.1 15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.3.1.1 15.3.1.2 15.3.2 15.3.2.1 15.3.2.2 15.3.2.3 16 16.1 16.1.1 16.1.2 16.2 16.3 Elastic Recoil Detection Analysis (ERDA) Oswald Benka Introduction 217 Fundamentals 218 Particle Identification Methods 220 Equipment 222 Data Analysis 223 Sensitivity and Depth Resolution 223 Applications 224 References 226 217 Nuclear Reaction Analysis (NRA) 229 Oswald Benka Introduction 229 Principles 231 Equipment and Depth Resolution 232 Applications 234 References 236 Field Ion Microscopy (FIM) and Atom Probe (AP) 237 Yuri Suchorski and Wolfgang Drachsel Introduction 237 Principles and Instrumentation 239 Field Ion Microscopy 239 Time-of-Flight Atom Probe Techniques 242 Field Ion Appearance Energy Spectroscopy 246 Applications 248 FIM Applications 248 FIM in Catalysis 248 Fluctuation-Induced Effects 249 Applications of AP Techniques 252 Applications of TOF-AP Techniques 252 PFDMS Applications 254 FIAES Applications 255 References 257 Other Ion-Detecting Techniques 261 John C Rivière Desorption Methods 261 Electron-Stimulated Desorption (ESD) and ESD Ion Angular Distribution (ESDIAD) 261 Thermal Desorption Spectroscopy (TDS) 262 Glow-Discharge Mass Spectroscopy (GD-MS) 263 Fast-Atom Bombardment Mass Spectroscopy (FABMS) 263 References 264 519 Index a absolute resolution 17 accuracy – in EELS 83, 84 – in R-laser-SNMS measurements 179, 180 – in Rutherford backscattering spectroscopy 198 – in Total-Reflection X-Ray Fluorescence (TXRF) Analysis 277, 281 – of atomic coordinates in superstructures 105 ACOLISSA 207 acronyms 4, adhesion, X-ray photoelectron spectroscopy and 32–34 AES, see Auger electron spectroscopy AFM, see atomic force microscopy aluminum 113 – energy spectrum of 226 – satellite lines of 14 – SSIMS spectra of oxide films on 128, 129 aluminum oxide 113 angle-integrated UPS 38 angle-resolved UPS 38 angle-resolved XPS 35 angle-scan TXRF 284 APFIM, see atom probe field ion microscopy appearance potential methods 437, 438 APT, see atom probe tomography argon 119, 144 ARUPS, see angle-resolved UPS atom probe – applications 252–257 – principles of operation 243 atom probe field ion microscopy 237 atom probe tomography 245 atomic force microscopy 3, 441, 443–464, 482 – applications 455–461 – constant force mode 446 – constant height mode 446 – force–distance curve measurements 447, 448 – force modulation microscopy 447 – forces 443, 444 – friction force microscopy 446, 447 – growth of ODS on silicon 459, 460, 461, 462 – harmonic imaging and torsional resonance mode 449–452 – instrumentation 452–455 – laser-based feedback signal detection 485 – liquid cell for measurements of surface processes 454 – phase imaging 447 – photoresist layer on silicon 456, 457 – principles 443–446 – pulsed force mode 448, 449 – PVD gold film on silicon 456 – quality factor 445, 446 – in situ measurements 457, 458 – tapping mode 445, 456, 457 – view of a liquid cell for measurements of surface processes 455 – Young’s modulus microscopy 447 atomic mixing 142 atomic-number correction factor 306 ATR, see attenuated total reflection attenuated total reflection 372–374 attenuation, in XRF 268 Auger electron spectroscopy 3, 43–65 – applications 54–60 – depth profiling 53, 54 – electron energy analyzers 45–47 – electron sources 44, 45 – and grain boundary segregation 54–56 – instrumentation 44–47 Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications, Second Edition Edited by Gernot Friedbacher, Henning Bubert © 2011 Wiley-VCH Verlag GmbH & Co KGaA Published 2011 by Wiley-VCH Verlag GmbH & Co KGaA 520 Index – interfaces 58 – nomenclature 10, 11 – principles 43, 44 – quantification 51–53 – and semiconductors 56–58 – spectral information 47–51 – and surface segregation 58–60 – thin films 58 – vacuum requirements 44 Auger energy 43 Auger parameter 27, 28 Auger process 10 Auger sensitivities, ratio between experimental and theoretical 52, 53 b back coupling 333 backscattering factor 52 backscattering yield, of H+ ions from Pb 200, 201 BaTiO3, EEL spectrum 77 beam broadening 296 beam-induced light emission, see ion beam spectrochemical analysis benzene on Ru(0001), experimental and calculated I–V curves of 102, 103 Berreman effect 368, 402 biomaterial interfaces, SFG spectroscopy on 428, 429 biosensors 133, 134 BIS, see Bremsstrahlung isochromat spectroscopy BLE, see ion beam spectrochemical analysis boron nitride – EELS quantification 83, 84 – low-loss spectrum 75, 76 Bragg energy 221 bremsstrahlung continuum 295 bremsstrahlung, elimination of 15 bremsstrahlung isochromat spectroscopy 3, 437, 438 bremsstrahlung radiation 438 Brewster angle 395 bright-field image 307, 308 broken bond model 148 c cantilevers 452, 453 CAP, see catalytic atom probe car paint defects 129, 130 carbon, effect of different chemical states on the KLL Auger spectrum of 49, 50 CARS, see coherent anti-stokes Raman scattering CASSE technique, see controlled all solidstate electrolysis technique catalysis – field ion microscopy in 248, 249 – X-ray photoelectron spectroscopy and 28, 29, 30 catalytic atom probe 253 cathodic sputtering 330 CaTiSiO5, low-loss spectrum 76 Cauchy formula 398 CCD, see charge-coupled device CCT, see constant current topography ceramic coatings 339 cesium 119, 148 CFM, see chemical force microscopy CHA, see concentric hemispherical analyzer channeling 193 charge-coupled device 335, 381 charge-coupled device camera 146 charge-injection device 335 charging effects 142, 143 chemical-bond mapping 88 chemical enhancement effect 146 chemical force microscopy 447 chemical shift 20 chemical state imaging 26 CID, see charge-injection device CITS, see current imaging tunneling spectroscopy Cliff–Lorimer factor 306 CMA, see cylindrical mirror analyzer CO adsorption 420, 421 – onto Pd nanoparticles 421–423 coated glass 339 coatings 339 coherent anti-stokes Raman scattering 389, 491 collision cascade 118 colloidal nanoparticles, SFG spectroscopy on 427, 428 complex refractive index 393 component depth profile 25 components 25 computer programs – for calculating LEED I–V curves 104, 105 – elastic recoil detection analysis 223 concentration–depth profiles 218 concentration matrix 25 concentric hemispherical analyzer 16, 17 constant current mode 467 constant current topography 467 constant emission yield 336 constant height mode 467 Index continuously rotating compensator ellipsometers 397 controlled all solid-state electrolysis technique 487 copper, wide-scan XPS spectrum 19, 20 corrosion, X-ray photoelectron spectroscopy and 31, 32 crater bottom roughening 142 CrN 157 cross-section curve 230 cross-sectional STM 470 current imaging tunneling spectroscopy 469 cylindrical mirror analyzer 45, 46 Czerny–Turner monochromator 334 d DEPTH 223 depth profiling 149–152 – Auger electron spectroscopy 53, 54 – Cu–Ag–Si 352 – of Cu in Si 186, 187 – of Cu in SiO2 186, 187 – dual-beam technique for TOF-SIMS instruments 152 – Fe–Cr–Mo alloy 24 – glow-discharge optical emission spectroscopy 338, 339 – molecular depth profiles 152 – of P implantation in Si 156 – of passivation layer on high-purity chromium 151 – pure iron 24 – surface analysis by laser ablation 348–354 – by TXRF and GIXRF 283–285 – X-ray photoelectron spectroscopy and 23–25 depth resolution – elastic recoil detection analysis 223, 224 – nuclear reaction analysis 232–234 – Rutherford backscattering spectroscopy 198 – secondary neutral mass spectrometry 162 detected yield 124 detection limits – in ERDA 223, 224 – Glow-Discharge Mass Spectroscopy (GDMS) 263 – of NR-laser-SNMS 185 – using LIBS/LIPS techniques 347, 348 – using TXRF 279, 280 – for metals on Si wafer surfaces 185 deuteron beams 232 DFM, see dynamic force microscopy differential scattering cross-section 218 diffraction of low-energy electrons, see lowenergy electron diffraction direct imaging magnetic sector mass analyzer 145 direct imaging mode 153, 154 disappearance cross-section 123 disappearance yield 123 DNA – detection of Sn-labeled DNA 188 – single nanocrystal DNA-base molecules 491 doppler broadening 233 Drude–Lorentz formula 398 dual-beam technique, for TOF-SIMS instruments 152 duoplasmatron 143, 144, 194 dynamic force microscopy 445 dynamic secondary ion mass spectrometry 117, 141–159 – applications 156–158 – atomic mixing 142 – charging effects 142, 143 – compensation of preferential sputtering 141 – crater bottom roughening 142 – imaging 152–154 – implantation of primary ions 142 – implantation profiles 156 – implantation standards 147, 148 – instrumentation 143–146 – ion sources 143, 144 – layer analysis 157, 158 – mass analyzers 144–146 – molecular depth profiles 152 – principles 141–143 – quantification 147–149 – spectral information 146 – sputter-induced roughness 142 – 3-D trace element distribution 158 – theoretical ionization models 148, 149 e EBIS, see electron beam ion source échelle spectrometer 348 EDX SSD, see energy-dispersive solid-state detector EDXS, see energy-dispersive X-ray spectroscopy EELS, see electron energy-loss spectroscopy EFTEM, see energy-filtered TEM EI SNMS, see electron-impact secondary neutral mass spectrometry elastic peak 74 521 522 Index elastic recoil detection analysis 3, 217–227 – applications 224–226 – data analysis 223 – ∆E–E method (energy-loss measurement) 217, 218 – depth resolution 223, 224 – energy spectra of O and Al recoils 226 – equipment 222 – fundamentals 218–220 – heavy projectiles 218 – light projectiles 218 – medium-heavy projectiles 218 – particle identification methods 220–222 – sensitivity 223, 224 – time-of-flight method (velocity measurement) 217, 218 elastic tunneling 112, 465 election-stimulated desorption electron beam ion source 143 electron beam SNMS 166, 167 electron energy analyzers – Auger electron spectroscopy 45–47 – XPS 16–18 electron energy-loss spectroscopy 3, 67, 309 – combination with TEM 85 – imaging of element distribution 85–88 – instrumentation 70–72 – ionization losses 77, 78 – low-loss excitations 74–76 – principles 68, 69 – qualitative spectral information 72, 83 – quantification 83–85 electron-impact secondary neutral mass spectrometry 161–177 – see also secondary neutral mass spectrometry electron spectroscopy for chemical analysis electron-stimulated desorption 261, 262 electron-stimulated desorption ion angular distribution 261, 262 electron tunneling model 148 element depth profiling, secondary neutral mass spectrometry 172, 173 element distributions, EELS and TEM imaging of 85–88 elemental map 26 ELL, see UV-VIS-IR ellipsometry ellipsometers 395–397 – achromatic compensators 396 – continuously rotating compensators 397 – null ellipsometers 396 – polarization modulation ellipsometers 397 – rotating-element ellipsometers 396 ellipsometry 393–405 – fundamental equation of 394 ELNES, see energy-loss near-edge structures energy analyzers 70 energy-dispersive solid-state detector 271 energy-dispersive X-ray spectroscopy 3, 77, 293–310 – artifacts in spectra 304 – imaging of element distribution 306–308 – line profiling 307 – principles 293–295 – qualitative spectral information 303, 304 – quantification 304–306 – spectrometer 297 – X-ray microanalysis and instrumentation 295–303 energy-filtered TEM 3, 85–87 energy-loss measurement 221 energy-loss near-edge structures 73 energy resolution – of detectors 295, 298, 301–303 – elastic recoil detection analysis 224 – in electron energy-loss spectroscopy 70–74 – in NRA depth profiling 233, 234 – of X-ray detector 301 – in X-ray photoelectron spectroscopy 16, 17 ERDA, see elastic recoil detection analysis ERIRS, see reflection absorption IR spectroscopy ESCA, see electron spectroscopy for chemical analysis ESCA-SCOPE 19 ESCALAB 250 19, 26 escape peaks 275 ESD, see electron-stimulated desorption ESD ion angular distribution ESDIAD, see ESD ion angular distribution ESRF, see European Synchrotron Radiation Facility European Synchrotron Radiation Facility 280 EXAFS, see extended X-ray absorption fine structure Excimer lasers 346 EXELFS, see extended energy-loss fine structures extended energy-loss fine structures 78 extended X-ray absorption fine structure 316, 317 Index external reflection infrared spectroscopy, see reflection absorption IR spectroscopy extinction coefficient 393 friction force microscopy 446, 447 front coupling 333 FT-IRAS, see reflection absorption IR spectroscopy f FABMS, see fast-atom bombardment mass spectroscopy factor analysis 25 Faraday cups 95, 145, 146 fast-atom bombardment mass spectroscopy 3, 263, 264 FCS, see fluorescence correlation spectroscopy FDM, see field desorption microscopy Fe–Cr alloys, Auger spectra 59, 60 FFM, see friction force microscopy FIAES, see field ion appearance energy spectroscopy FIB technique, see focused ion beam technique field desorption microscopy 242 field ion appearance energy spectroscopy 246, 247 – applications 255–257 – principles 244 – of reactants in CO oxidation on Pt 255, 256 field ion mass spectrometry 246 field ion microscopy 3, 237–260 – applications 248–252 – in catalysis 248, 249 – fluctuation-induced effects 249–252 – instrumentation 239–242 – principles 239–242 field ionization 240, 241 FIM, see field ion microscopy FIMS, see field ion mass spectrometry fine structures 79–83 fluorescence 304, 306, 378, 380 – in SNOM 488, 489 – Total-Reflection X-Ray 275–278, 280–285 – yield 51, 281, 294 fluorescence correlation spectroscopy 489 fluorescence resonance energy transfer 489 FMM, see force modulation microscopy focused ion beam technique 56, 487 force–distance curves 444, 445, 447, 448 force modulation microscopy 447 formic acid, time-resolved measurements for decomposition of 424, 425 FRET, see fluorescence resonance energy transfer g GaAs – ELL spectra of a-Si/SiN multilayer stack on 398, 399 – nonresonant laser-SNMS mapping of a contact test structure on 185, 186 – RBS spectra of 195, 196 gallium 119 gas telescope detectors 221 Gatan imaging filter 72 Gaussian-broadened polynomial superposition parametric dispersion model 398 GD-MS, see glow-discharge mass spectrometry GD-OES, see glow-discharge optical emission spectroscopy geometric yield 183 geometrical shadowing 487 GIAB diffraction, see grazing incidence asymmetric Bragg diffraction GIAB geometry, see grazing incidence angle asymmetric Bragg geometry GIR, see grazing incidence reflection GIXRF, see grazing incidence X-ray reflectivity GIXS, see grazing incidence X-ray scattering glancing angle X-ray diffraction 314–316 glow-discharge mass spectrometry 3, 263, 339 glow-discharge optical emission spectroscopy 3, 329–344 – applications 339–342 – dc GD sources 340 – depth profiling 336–338 – glow discharge sources 330–334 – instrumentation 330–335 – principles 329, 330 – quantification 336, 337 – rf GD sources 340–342 – signal acquisition 334, 335 – spectral information 335 – spectrometer 334 glow discharge sputtering 349 Goebel mirrors 319 grain boundary segregation 54–56 graphite 477, 478 grazing incidence angle asymmetric Bragg geometry 315 523 524 Index grazing incidence asymmetric Bragg diffraction 319–321 – applications 323, 324 grazing incidence reflection 374 grazing incidence X-ray methods for nearsurface structural studies 311–327 – applications 321–325 – experimental techniques and data analysis 317–321 – grazing incidence X-ray geometry 312–314 – principles 311–317 grazing incidence X-ray reflectivity 281, 314, 318, 319 – applications 321–323 – depth profiling 283–285 grazing incidence X-ray scattering 315, 316, 324, 325 Grimm principle 330 guanine, optical constants 404 GXRR, see grazing incidence X-ray reflectivity h H depth profiles 233, 236 hard coatings 339 harmonic imaging 449–452 HAS, see He atom scattering He atom scattering 408 heavy ion backscattering spectroscopy 201 HIBS, see heavy ion backscattering spectroscopy high-resolution electron energy-loss spectroscopy 374, 408 highly oriented pyrolytic graphite 477, 478 HOPG, see highly oriented pyrolytic graphite hot isostatically pressed steels 158 HREELS, see high-resolution electron energy-loss spectroscopy i I–V curves, LEED 102, 103 IAES, see ion (excited) Auger electron spectroscopy IBSCA, see ion beam spectrochemical analysis ICCD detector, see intensified chargecoupled device detector IETS, see inelastic electron tunneling spectroscopy imaging – direct imaging mode 153, 154 – dynamic secondary ion mass spectrometry 152–154 – static secondary ion mass spectrometry 135, 136, 137 – XPS 26, 27 imaging atom probe 243 IMFP, see inelastic mean free path impact collision ion-scattering spectroscopy, structure analysis 210 implantation profiles 156 implantation standards 147, 148 in-column filters 72 inelastic electron tunneling spectroscopy 3, 112, 113 inelastic mean free path 11, 12 inelastic scattering cross-section 67 inelastic tunneling 112 infrared ellipsometer 397 infrared ellipsometry 374, 400–404 infrared reflection absorption spectrum 409 infrared spectroscopic ellipsometry 400 infrared spectroscopy 492 INS, see ion neutralization spectroscopy instrumentation – atomic force microscopy 452–455 – Auger electron spectroscopy 44–47 – dynamic secondary ion mass spectrometry 143–146 – electron energy-loss spectroscopy 70–72 – field ion microscopy 239–242 – glow-discharge optical emission spectroscopy 330–335 – ion beam spectrochemical analysis 358–360 – laser-secondary neutral mass spectrometry 182 – low-energy electron diffraction 94, 95, 96 – low-energy ion scattering 206–208 – near-field optical microscopy 482–488 – reflection absorption IR spectroscopy 367, 368 – Rutherford backscattering spectroscopy 194, 206 – scanning tunneling microscopy 467, 468 – static secondary ion mass spectrometry 119–123 – sum frequency generation spectroscopy 414–417 – surface analysis by laser ablation 346–348 – surface Raman spectroscopy 380–382 – total-reflection X-ray fluorescence analysis 269–275 Index – UV-VIS-IR ellipsometry 395–397 – X-ray photoelectron spectroscopy 12–19 intensified charge-coupled device detector 348 intensity of a spectral emission line, IBSCA 361 interfaces 128–131 interference fringes 314 inverse photoemission spectroscopy 3, 437, 438 ion beam spectrochemical analysis 3, 357–366 – applications 363–366 – depth profile of altered layer region of a LAS glass ceramic 365, 366 – instrumentation 358–360 – principles 357, 358 – quantitative analysis 361–363 – spectra of an antireflecting coating soda-lime glass 363, 364 – spectral and analytical information 360, 361 ion bombardment 23 ion (excited) Auger electron spectroscopy 3, 111 ion neutralization spectroscopy 111, 112 ion sources 359 ion sputtering 23, 53 IPES, see inverse photoemission spectroscopy IR spectroscopy, see infrared spectroscopy IRAS, see infrared reflection absorption spectrum IRRAS, see reflection absorption IR spectroscopy IRSE, see infrared spectroscopic ellipsometry k K-resolved IPES 438 Kiessig fringes 314 kinematic factor 191, 193, 218 kinematic line broadening 222 KLL Auger series 47, 48 Kramers’ law 305 KRIPES, see K-resolved IPES l LA, see laser ablation LAAS, see laser atomic absorption spectroscopy Langmuir–Blodgett films 134, 321, 323, 325, 386 laser ablation – advantages of 354 – surface analysis by 345–355 laser atomic absorption spectroscopy 347 laser-induced breakdown spectroscopy 347 laser-induced fluorescence spectroscopy 3, 347 laser-induced plasma spectroscopy 347 laser ionization mass spectrometry 180 laser-secondary neutral mass spectrometry 3, 179–189 – applications 184–188 – experimental set-up 180, 181 – instrumentation 182 – ionization schemes 181, 182 – nonresonant laser-secondary neutral mass spectrometry 184, 185, 186 – principles 179–182 – quantification 183, 184 – resonant laser-SNMS 179, 180, 186–188 – spectral information 183 lasers – beam shape 346 – Excimer lasers 346 – Nd : YAG laser 346, 414 – titanium-sapphire laser 414 lateral force microscopy 446 lattices – direct 98, 99 – reciprocal 98, 99 layer analysis 157, 158 LEED, see low-energy electron diffraction LEEM, see low-energy electron microscopy LEIS, see low-energy ion scattering LFM, see lateral force microscopy LIBS, see laser-induced breakdown spectroscopy LIF spectroscopy, see laser-induced fluorescence spectroscopy LIPS, see laser-induced plasma spectroscopy liquid–gas interfaces, SFG spectroscopy at 429, 430 liquid–liquid interfaces, SFG spectroscopy at 429, 430 liquid metal ion sources 119, 120, 152 LMIS, see liquid metal ion sources local thermodynamic equilibrium 148, 149 low-energy electron diffraction 3, 93–106, 408 – applications and restrictions 100, 101, 105, 106 – computer programs 104, 105 – experimental techniques 102, 103 525 526 Index – four-grid display system 94 – history 93, 94 – instrumentation 94, 95, 96 – LEED I–V curves 101–103 – LEED pattern 95–97 – principles 93, 94, 101, 102 – qualitative information 96–101 – quantitative structural information 101–106 – spot profile analysis 100 low-energy electron microscopy 106–108 – applications and restrictions 108 – principles of operation 106–108 low-energy ion scattering 203–215 – alumina 209, 210 – applications 211–214 – chemical analysis 210 – energy information from spectrum 208 – instrumentation 206–208 – principles 203–206 – quantification 211, 212 – spectra of Cu/ZnO/SiO2 catalyst 212, 213 – structure analysis 210 – yield information 208–210 low-energy X-ray lines – energies 14 – linewidths 14 m macrostrain 321 magnesium, satellite lines of 14 magnetic sector field 144, 145 mass analyzers 120–123 – detector 145, 146 – dynamic secondary ion mass spectrometry 144–146 – magnetic sector field 144, 145 – quadrupole mass spectrometers 120, 121 – time-of-flight mass spectrometry 121–123 mass attenuation coefficient 268 mass resolution 120–123, 125, 149, 154, 182, 185, 242, 245 – Rutherford backscattering spectroscopy 197, 198 mass spectra 149 – of high-speed steel 149, 150 Mattauch–Herzog geometry 145 medium-energy ion scattering 201 MEIS, see medium-energy ion scattering 4-mercaptopyridine 469 metal ceside ions 148 metal island films 379 metallic coatings 339 metalorganic chemical vapor deposition 373 MeV He+ ions, backscattering spectra 192 mid-infrared range 400, 401 MLFM, see modulated lateral force microscopy MOCVD, see metalorganic chemical vapor deposition modulated lateral force microscopy 447 molecular depth profiles 152 monochromatization 15 Müller, E.W 237 MULSAM, see multi-spectral Auger microscope multi-spectral Auger microscope 58 multicapillary X-ray lenses 298 multiple point analysis 54 n nanolayers, characterization of 283–285 NanoScope® AFM 453 narrow-scan spectra 19 Nd : YAG laser 346, 414 near-edge X-ray absorption fine structure 281, 317 near-field ablation 354 near-field optical microscopy 481–497 – advanced tip fabrication 487, 488 – basic set-up 482, 483 – coating deposition and aperture formation 486, 487 – instrumentation and operation 482–488 – scanning and feedback techniques 484, 485 – SNOM applications 488–493 – SNOM variations 483, 484 – taper formation 486 – tip fabrication 485–488 near-field Raman spectroscopy 387, 490–492 near-infrared, ellipsometric measurements in 399 near-infrared excitation wavelengths 378 neodymium-yttrium-aluminum-garnet laser 346, 414 NEXAFS, see near-edge X-ray absorption fine structure Ni on Si substrate, backscattering spectra for MeV He+ ions on 192 nomenclature, in electron spectroscopy 10 nonlinear optical spectroscopy 387–390 – coherent anti-stokes Raman scattering 389 Index – spatially offset Raman spectroscopy 390 – stimulated femtosecond Raman scattering 389, 390 – sum frequency generation spectroscopy 387–389 nonresonant laser-secondary neutral mass spectrometry 179, 180, 184, 185, 186 – element mapping 185, 186 nonresonant susceptibility 413 NRA, see nuclear reaction analysis NSOM, see scanning near-field optical microscopy nuclear reaction analysis 3, 229–236 – applications 234–236 – depth resolution 232–234 – equipment 232–234 – with gamma-emission 236 – principles 231, 232 null ellipsometers 396 o octadecylsiloxane 458, 459, 460, 461, 462 octadecyltrichlorosilane 460 ODNs, see oligodeoxynucleotides ODS, see octadecylsiloxane oligodeoxynucleotides 133, 134 optical constants 404 optical lever technique 453 optical microscopy, near-field 481–497 oxide films 128 oxide scales 339 oxygen, energy spectrum of 226 p parallel angle-resolved XPS 18 parallel-detection EELS 71 particle-induced gamma emission 230 particle probes particulate and film-type surface contamination 277, 278 Paschen–Runge polychromator configuration 334 passivated implanted planar silicon detector 194 passivation, X-ray photoelectron spectroscopy and 31, 32 PASTM, see photon-assisted scanning tunneling microscopy PDI, see phase detection imaging PEELS, see parallel-detection EELS PEEM, see photoelectron emission microscopy PEM, see photoelastic modulator peptide nucleic acid 133, 134 PESTM, see photon emission scanning tunneling microscopy PFDMS, see pulsed-field desorption mass spectrometry PGM, see plane-grating monochromator phase detection imaging 447 phase imaging 447 pHEMA, see poly(2-hydroxyethyl methacrylate) photoelastic modulator 397 photoelectron emission microscopy 108 photoelectron emission process 10 photomultiplier tube 334 photon-assisted scanning tunneling microscopy 470 photon emission scanning tunneling microscopy 470 photon energies, normalized XPS spectrum of 16 photon scanning tunneling 483 Physikalisch-Technische Bundesanstalt, TXRF instrumentation 281, 282 PIGE, see particle-induced gamma emission PIPS detector, see passivated implanted planar silicon detector plane-grating monochromator 281 PLAP, see pulsed laser atom probe plasma etching 131 plasma SNMS 167–169 plasmon energy loss 50, 51 plasmons 75 PMT, see photomultiplier tube PNA, see peptide nucleic acid polarization 382 polarization-dependent SFG spectroscopy 419, 420 – ppp polarization 419 – on solid surfaces 420 – ssp polarization 419 polarization modulation ellipsometers 397 poly(2-hydroxyethyl methacrylate) 429 polyethylene 429 polymer brushes, pH-dependent switching of 403, 404 polymer coatings 339 polymers – mass-resolved images of 136 – SFG spectroscopy on 428, 429 – treatment of surfaces 131, 132 – X-ray photoelectron spectroscopy and 30, 31 poly(methyl methacrylate) 370 polypropylene 429 polystyrene, SSIMS spectrum 125, 126 527 528 Index polytetrafluoroethylene 131, 132 poly(vinyl chloride), optical constants 402 positive noble gas ions 119 postionization 161 – via electron impact 163, 164 powder materials, SFG spectroscopy on 427, 428 ppp polarization 419, 425 preferential sputtering 141 primary ions, implantation of 142 probes projectiles 232 protons 232 Pt(111), SFG spectra of CO adsorption on single crystal surface of 417, 418 PTB, see Physikalisch-Technische Bundesanstalt PTFE, see polytetrafluoroethylene pulsed-field desorption mass spectrometry 246 – applications 254, 255 pulsed force mode AFM 448, 449 pulsed laser atom probe 244, 245 pump-probe SFG, broad band and 423–427 PVC, see poly(vinyl chloride) q quadruple photodiode 446 quadrupole mass spectrometers 120, 121 Quantum 2000 19 quantum mechanical tunneling effect 465 quartz 15 r radial distribution function 83 RAE, see resistive anode encoder RAIRS, see reflection absorption IR spectroscopy Raman scattering 377 Raman spectra – of methyl mercaptan 387 – of nitrophenyl-modified and untreated glassy carbon 384 Raman spectroscopy 374 Rayleigh criterion 481 RBS, see Rutherford backscattering spectroscopy reactive sputtering 146 reflection absorption IR spectroscopy 3, 367–375 – applications 369–371 – instrumentation 367, 368 – principles 368, 369 – related techniques 374 – spectra for poly(ethyl methacrylate) 370, 372 reflection EXAFS 316, 317 – applications 325 reflection high-energy electron diffraction 3, 408 ReflEXAFS, see reflection EXAFS refractive index 393 relative resolution 17 relative sensitivity factor 124, 125, 147, 362 – for metals on Si wafer surfaces 185 repulsive force 449 resistive anode encoder 146 resolution – depth, see depth resolution – energy, see energy resolution – mass 197, 198 – spatial 18, 19 resonance NRA 234 resonant laser-SNMS 179, 180, 186–188 – of copper around tellurium and cadmium inclusions 186, 187 rf-powered sources 332 Rh(111), reduction of surface oxide on 474 RHEED, see reflection high-energy electron diffraction rotating-element ellipsometers 396 Rowland sphere 15 RSF, see relative sensitivity factor Rutherford backscattering spectroscopy 3, 191–202, 217 – accuracy 198 – applications 198–200 – depth resolution 198 – instrumentation 194, 206 – mass resolution 197, 198 – principles 191–194 – quantification 196, 197 – sensitivity 198 – spectra of GaAs implanted with Si 195, 196 – spectral information 194–196 s SAED, see selected-area electron diffraction SAM, see scanning Auger microscopy sample thickness 333 satellite lines – of magnesium and aluminum 14 – removal of 15 SBD, see solid-state surface barrier detectors Index SCANIIR, see ion beam spectrochemical analysis scanning atom probe 237 scanning Auger microscopy 3, 45, 61–63 scanning near-field infrared microscopy 492 scanning near-field optical microscopy 3, 441, 481 – applications 488–493 – disadvantages 493 – fluorescence 488, 489 – near-field Raman spectroscopy 490–492 – outlook 493 – variations of 483, 484 scanning near-field optical microscopy-IR spectroscopy 492, 493 scanning probe microscopy 441, 481 scanning SFG 415 scanning SIMS 152, 153 scanning tunneling microscopy 3, 441, 442, 465–480 – applications 470–479 – cerium alkoxyl-substituted phthalocyanine complex on HOPG 477, 478 – constant current mode 467 – constant height mode 467 – Cu dissolution on a Cu(100) surface 476, 477 – growth of Ce on a Rh(111) surface 471, 472 – instrumentation 467, 468 – lateral and spectroscopic information 468–470 – principles 465–467 – Si(111)-7X7 surface exposed to O2 471, 473 – Si(111) surface 468, 469 – spin-polarized 469 – surface oxide on Rh(111) surface 474, 475 – Violet Lander molecule adsorbed on Cu(211) surface 477 scanning tunneling spectroscopy 469 screened scattering potential 203 second harmonic generation 3, 388, 408 secondary electron detectors 123 secondary ion mass spectrometry 284, 349, 408 – depth profile of altered layer region of a LAS glass ceramic 365, 366 – dynamic, see dynamic secondary ion mass spectrometry – three-dimensional 154, 155 secondary ions 164–166 secondary neutral mass spectrometry – advantages of 162 – applications 174, 175 – depth resolution 162 – detection power 162 – electron beam 166, 167 – element depth profiling 172, 173 – HF-plasma SNMS 174 – instrumentation and methods 166–169 – plasma SNMS 167–169 – postionization via electron impact 163, 164 – principles 162–166 – spectra of a Cu sample containing trace amounts of P and Fe 165 – spectral information and quantification 170–172 – suppression of residual gas and secondary ions 164–166 secondary yield 124 SEELS, see serial-detection EELS Seeman–Bohlin geometry 315 SEIRA, see surface-enhanced infrared absorption effect; surface-enhanced Raman spectroscopy selected-area electron diffraction 56 self-assembled monolayers 386, 458, 469 semiconductors 278–287 – Auger electron spectroscopy and 56–58 – depth profiling by TXRF and GIXRF 283–285 – synchrotron radiation-based techniques 280–283 – vapor-phase decomposition and droplet collection 285–287 – vapor-phase treatment and total reflection X-ray fluorescence analysis 287 – X-ray photoelectron spectroscopy and 35–37 sensitivity 53, 71, 77, 84, 85, 124, 143, 146, 218, 223, 224, 348, 380, 381 – relative sensitivity factors 147, 171, 172, 185, 263, 362, 393, 396 – Rutherford backscattering spectroscopy 198 – surface 204, 208, 209, 211 – ultimate 239, 246 sequencing by hybridization 188 serial-detection EELS 70 serial-recording EEL spectrometer 71 SERRS, see surface-enhanced resonance Raman scattering SERS, see surface-enhanced Raman scattering 529 530 Index SEXAFS, see surface EXAFS SFG, see sum frequency generation SFG spectroscopy, see sum frequency generation spectroscopy SFRS, see stimulated femtosecond Raman scattering SHG, see second harmonic generation SiGe/Si strained layer superlattice 199, 200 signal-to-noise ratios 63, 71, 103, 207, 381 silicon – ellipsometric spectra from SiO2 layer on 399 – formation of a buried β-FeSi2 layer in 199 – nonresonant laser-SNMA spectrum of 184 – SSIMS spectrum 125, 126 silicon carbide, EEL spectrum 73, 74 silicon drift detectors 272, 273, 274 SIMNRA 223, 224 SIMS, see secondary ion mass spectrometry single tube piezo scanner 454 single-walled carbon nanotube-coated tips 490 SiO2/Si3N4 double layer on silicon, IR ellipsometric spectra 402, 403 Sn-labeled DNA, R-laser-SNMS image of 188 SNIM, see scanning near-field infrared microscopy SNMS, see laser-secondary neutral mass spectrometry SNOM, see scanning near-field optical microscopy SNOM-IR, see scanning near-field optical microscopy-IR spectroscopy soft X-ray appearance potential spectroscopy 3, 437 solid–liquid interfaces, SFG spectroscopy on 428 solid-state surface barrier detectors 230 solid surface, definition of SORS, see spatial offset Raman scattering; spatially offset Raman spectroscopy SPA-LEED system 95, 96 spatial offset Raman scattering 382 spatial resolution, X-ray photoelectron spectroscopy 18, 19 spatially offset Raman spectroscopy 390, 493 spectroscopic notation 10, 11 spectrum-image method 87, 307 spectrum matrix 25 spin-polarized STM 469 SPM, see scanning probe microscopy spot profile analysis 100 sputter-induced roughness 142 sputtering 23, 53, 118, 141, 162 – cathodic 330 – glow discharge 349 – reactive 146 SSA, see step-scan analyzer mode SSDs, see silicon drift detectors SSIMS, see static secondary ion mass spectrometry SSP, see step-scan polarizer mode ssp polarization 425 SSRL, see Stanford Synchrotron Radiation Lightsource stainless steel, study of pitting corrosion at MnS inclusion 61–63, 64 Stanford Synchrotron Radiation Lightsource 280 static secondary ion mass spectrometry 3, 117–139 – applications 127–138 – biosensors 133, 134 – imaging 135, 136, 137 – instrumentation 119–123 – interfaces 128–131 – ion sources 119, 120 – mass analyzers 120–123 – oxide films 128 – polymers 131, 132 – principles 117, 118 – quadrupole mass spectrometers 120, 121 – quantification 123–125 – spectral information 125–127 – surface reactions 134, 135 – time-of-flight mass spectrometry 121–123 – ultra-shallow depth profiling 137, 138 steel – Auger spectra of fracture surfaces of 12%-Cr steel 55 – 3-D trace element distribution 158 step-scan analyzer mode 397 step-scan polarizer mode 397 stimulated femtosecond Raman scattering 389, 390 STM, see scanning tunneling microscopy stopping power 218 STS, see scanning tunneling spectroscopy sum frequency generation 3, 374, 388, 408 sum frequency generation spectroscopy 387–389, 407–435 – at the alcohol–vapor interface 429, 430 – applications 417–430 Index – broad band 416 – broad band IR-visible 426 – on colloidal nanoparticles and powder materials 427, 428 – on colloidal Pt nanoparticles 427 – instrumentation and operation modes 414–417 – introduction 407–410 – at liquid–gas and liquid–liquid interfaces 429, 430 – measurements 415 – modes of 415, 416 – under near-atmospheric gas pressure 420, 421 – number density of molecules from signal intensity 413, 414 – polarization-dependent 416, 417, 419, 420 – on polymer and biomaterial interfaces 428, 429 – pump-probe 416 – second-order polarization 411 – signal intensity and lineshape 412, 413 – on solid–liquid interfaces 428 – on solid surfaces and solid–gas interfaces 417–428 – on supported metal nanoparticles 421–423 – theory 410–414 – time-resolved and broadband 423–427 – under UHV conditions 417–419 – vibrational IR-visible 410, 411 super-lattices 99 superconductors, X-ray photoelectron spectroscopy and 34, 35 supported metal nanoparticles, SFG spectroscopy on 421–423 surface analysis acronyms 4, surface analysis by laser ablation 345–355 – depth profiling 348–354 – instrumentation 346–348 – laser types 346, 347 – near-field ablation 354 – schemes 347, 348 surface barrier detector 221 surface composition by analysis of neutral and ion impact radiation, see ion beam spectrochemical analysis surface-enhanced infrared absorption 492 surface-enhanced infrared absorption effect 372–374 surface-enhanced Raman scattering 378, 379 – spectra of methyl mercaptide 387 surface-enhanced Raman spectroscopy 3, 386, 387, 490 surface-enhanced resonance Raman scattering 379, 490 surface EXAFS 317 surface melting 200 surface Raman spectroscopy 377–391 – applications 383–387 – instrumentation 380–382 – porous materials 385, 386 – principles 377, 378 – quantification 383 – resonant excitation 378 – specific surface area 377, 378 – spectral information 382 – surface-enhancement 378 – ultrasensitive equipment 377 – unenhanced Raman spectroscopy at smooth surfaces 383–385 surface reactions 126, 134, 135, 246, 248, 316 surface removal 23 surface segregation, Auger electron spectroscopy and 58–60 surface-specific analytical techniques – using non-particle excitation – using particle or photon excitation surfaces, importance of survey XPS spectrum 19, 20 switching behavior of stimuli-responsive mixed polymer brushes 403 SWNT-coated tips, see single-walled carbon nanotube-coated tips SXAPS, see soft X-ray appearance potential spectroscopy synchrotron 367 synchrotron radiation 16 synchrotron radiation-based techniques 280–283 Synge, E.H 481 t TCO films, analysis of 399 TDS, see thermal desorption spectroscopy TEIRA, see tip-enhanced infrared absorption TEM, see transmission electron microscopy TEM/STEM Hitachi H-8110 300 temperature-programmed desorption, see thermal desorption spectroscopy Tensor LEED approximation 104 TERS, see tip-enhanced Raman scattering THC, see torsional harmonic cantilever 531 532 Index thermal desorption spectroscopy 3, 262, 263 thin-film criterion 306 thin films, and interfaces 58 thin layers 339 three-dimensional SIMS 154, 155 Ti-diamond layer, depth profiles 58, 59 tilt angles of molecules on a surface 369 time-of-flight atom probe techniques 242–246 – applications of 252–254 time-of-flight ERDA 225 time-of-flight LEIS, for Au films deposited on B 213, 214 time-of-flight mass spectrometry 121–123, 136, 180 – of silver bromide and silver chloride crystals 137 time-of-flight SIMS 180 time-of-flight SIMS instruments, dual-beam technique for 152 tin, chemical shift 21 TiN-coated steel, quantitative depth profile 340 TiN–TiAlN–Fe sample, crater surfaces 353 TiO2–SiO2–TiO2 (TST-mirror) – IBSCA depth profile 364, 365 – SIMS depth profile 364, 365 tip-based signal enhancement 491 tip-enhanced infrared absorption 492 tip-enhanced Raman scattering 490 titanium-based coatings, depth profile analysis 349 titanium-sapphire laser 346, 414 TOF-ERDA, see time-of-flight ERDA TOF-LEIS, see time-of-flight LEIS TOF-MS, see time-of-flight mass spectrometry TOF-SIMS, see time-of-flight SIMS torsional harmonic cantilever 450, 451 torsional resonance mode 449–452 total-reflection X-ray fluorescence analysis 3, 267–292 – applications 277–287 – depth profiling by 283–285 – detection limits for various elements on Si wafers 279, 280 – instrumentation 269–275 – particulate and film-type surface contamination 277, 278 – principles 267–269 – quantification 276, 277 – semiconductors 278–287 – spectral information 275, 276 – synchrotron radiation-based techniques 280–283 – vapor-phase decomposition and droplet collection 285–287 – vapor-phase treatment and 287 transformation probability 123 transition elements – LLM Auger series 47, 48 – MNN Auger series 47, 48, 49 transmission electron microscopy 67, 68 – instrumentation 70–72 – interactions between high-energy electrons and matter in 68 transmission Raman spectroscopy 382 TRIM program 224 tube etching 486 tunneling current 465 tunneling junction, energy level diagram 466 Turner’s etching method 486 TXRF analysis, see total-reflection X-ray fluorescence analysis u ultra-shallow depth profiling 137, 138 ultra-shallow junctions, characterization of 283–285 ultrahigh vacuum 13 ultraviolet photoelectron spectroscopy 3, 38, 39 unenhanced Raman spectroscopy at smooth surfaces 383–385 UPS, see ultraviolet photoelectron spectroscopy useful yield 124, 183 UV-VIS-IR ellipsometry 3, 393–405 – applications 398–404 – infrared ellipsometry 400–404 – instrumentation 395–397 – principles 393–395 – UV-VIS-NIR spectral region 398–400 v Van de Graaff electrostatic accelerator 194 vapor-phase decomposition 287 – and droplet collection 285–287 vapor-phase treatment 287 – and total reflection X-ray fluorescence analysis 287 velocities of particles 221 VG9000 263 Violet Lander molecule adsorbed on Cu(211) surface 477 Index Vis–NIR spectral range 398 VPD, see vapor-phase decomposition VPT, see vapor-phase treatment w W/TiN/Ti/Si contact structure 58 wafer surface preparation system 285 wavelength-dispersive X-ray spectroscopy 293 – spectrometer 297 – spectrum of BaTiO3 302 WDXS, see wavelength-dispersive X-ray spectroscopy white lines 77 wide-scan XPS spectrum 19, 20 WSPS, see wafer surface preparation system x X-ray absorption near edge structure 317 X-ray detector, energy resolution 301 X-ray detector with Li-drifted Si crystal 299 X-ray diffraction – glancing angle 314–316 X-ray microanalysis and instrumentation 295–303 X-ray notation 10, 11 X-ray photoelectron spectroscopy 3, 9–41, 349 – and adhesion 32–34 – applications 28–37 – Auger parameter 27, 28 – and catalysis 28, 29, 30 – chemical shifts 19–21 – configuration in a spectrometer 18 – and corrosion 31, 32 – depth profiling 23–25 – electron energy analyzers 16–18 – energy resolution 17 – imaging 26, 27 – instrumentation 12–19 – nomenclature 10, 11 – and passivation 31, 32 – and polymers 30, 31 – principles 9–12 – quantification 21–23 – and semiconductors 35–37 – spatial resolution 18, 19 – spectral information 19–21 – spectrometers 18 – and superconductors 34, 35 – synchrotron radiation 16 – ultrahigh vacuum 13 – vacuum requirements 12, 13 – X-ray sources 13–15 X-ray take-off angle 298 XANES, see X-ray absorption near edge structure XPS, see X-ray photoelectron spectroscopy XRD, see X-ray diffraction XSTM, see cross-sectional STM y YMM, see Young’s modulus microscopy Young’s modulus microscopy 447 z ZAF correction 306 zero force 449 zero-loss peak 74 zinc-coated steel, GD-OES and LIBS emission profiles of Zn and Fe in 349, 350 ZnO : Al film, optical constants 400 533