1. Trang chủ
  2. » Luận Văn - Báo Cáo

Infrared and raman spectroscopy  principles and spectral interpretation

279 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

SECOND EDITION I nfrared and Raman Spectroscopy Principles and Spectral Interpretation 5nr* Wavenumber (orr1) 9780128041678 PETER J LA R K IN INFRARED AND RAMAN SPECTROSCOPY INFRARED AND RAMAN SPECTROSCOPY PRINCIPLES AND SPECTRAL INTERPRETATION SECOND EDITION P e t e r J L a r k in , Spectroscopy and Materials Characterization Solvay, Stamford, C T , United States ELSEVIER Elsevier Radarweg 29, PO Box 211,1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford 0X5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States Copyright © 2018 Elsevier Inc All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright bv the Publisher (other than as may be noted herein) ^ Notices Knowledge and best practice in this field are constantly changing As new research and experience broaden our understanding, changes in research methods, professional practices or med' , treatment may become necessary ' lcal Practitioners and researchers must always rely on their own experience and knowl d and using any information, methods, compounds, or experiments described hprfm/r86 m evaluatin8 information or methods they should be mindful of their own safety and the safetv f SUC^ including parties for whom they have a professional responsibility ^ ^ ° ot^ers' To the fullest extent of the law, neither the Publisher nor the authors, contributors assume any liability for any injury and/or damage to persons or property as a matt ed/ t0rS' liability, negligence or otherwise, or from any use or operation of any methods D roJ V pr°ducts instructions, or ideas contained in the material herein '" uctS/ Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress British Library Cataloguing-in-Publication Data A rpf nrd for this book is available from the British Library ISBN : 978-0-12-804162-8 For information on all Elsevier publications visit our website at https:/ / www.elsevier.com/books-and-joumals Im p I F I E i w ° rking together to grow libraries in i ELSEVIeR , International developing countries www.elsevier.com » www.bookaichorg Publisher : John Fedor Acquisition Editor: Kathryn Morrissey Editorial Project M anager: Amy M Clark Production Project M anager: Vijay Bharath Cover D esigner: Greg Harris T y p e s e t b y TN Q B o o k s a n d J o u r n a ls R To my wife Donna and my children Elizabeth and Matthew My thanks and appreciation for mentoring provided by Norman B Colthup Contents Preface 1 Crystalline Lattice Vibrations Fermi Resonance 70 References 73 ix Introduction: Infrared and Raman Spectroscopy Origin of Group Frequencies Historical Perspective: Infrared and Raman Spectroscopy References Basic Principles Classical Harmonic Oscillator 10 Quantum Mechanical Harmonic Oscillator 12 Infrared Absorption Process 14 The Raman Scattering Process 15 Classical Description of the Raman Effect 18 Symmetry: Infrared and Raman Active Vibrations 19 Selecting the Raman Excitation Wavelength 22 10 Calculating the Vibrational Spectra of Molecules 25 References 28 Instrumentation and Sampling Methods 29 Instrumentation 29 Sampling Methods for Infrared Spectroscopy Quantitative Analysis 51 References 61 4- Environmental Dependence of Vibrational Spectra 6312 Solid, Liquid, and Gaseous States Hydrogen Bonding 66 63 IR and Raman Spectra—Structure Correlations: Characteristic Group Frequencies 85 45 75 Coupled Oscillators 75 Rules of Thumb for Various Oscillator Combinations 79 References 84 Electromagnetic Radiation Molecular Motion/Degrees of Freedom 68 X —H Stretching Group ( X = , S, P, N, Si, B) 85 Aliphatic Groups 87 Conjugated Aliphatics and Aromatics 92 Carbonyl Groups 113 C —O and C —N Stretches of Alcohols, Ethers, and Amines 118 N = and Other Nitrogen-Containing Compounds 122 C-Halogen and C —S Containing Compounds 123 C = S , S = , P = , B - O / B - N , and S i - O Compounds 125 Inorganics 130 References 13 34 General Outline for IR and Raman Spectral Interpretation 135 L Tools of the Trade 135 Infrared Sample Preparation Issues 136 Overview of Spectral Interpretation 139 Interpretation Guidelines and Major Spectra—Stmcturc Correlations 142 viii CONTENTS Illustrated IR and Raman Spectra Demonstrating Important Functional Groups 153 10 11 12 13 Aliphatic 153 Cyclic Ether and Amine 153 C = C Double Bonds 154 Triple Bonds 154 Aromatic Rings 154 SiX'Membered Ring Heterocycle 154 Five^Membered Ring Heterocycle 154 Ketones, Esters, and Anhydrides 155 Amides, Ureas, and Related Compounds Thiocarhonyls 155 C = N Compounds 156 Alcohols 156 Ethers 156 14 15 16 17 18 19 20 22 155 Amines and Amine Salts 156 N = Compounds 157 Azo Compound 157 Boronic Acid Compound 157 Chlorine, Bromine, and Fluorine Compounds 157 Sulfur Compounds 157 Phosphorus Compounds 157 Inorganic Compounds 158 Polymers and Biopolymers 158 Unknown IR and Raman Spectra Appendix: IR Correlation Charts Index 265 261 211 Preface IR and Raman spectroscopy have tremendous potential to solve a wide variety of complex problems Both techniques are completely complementary providing char­ acteristic fundamental vibrations that are extensively used for the determination and identification of molecular structure The advent of new technologies has introduced a wide variety of options for implementing IR and Raman spectroscopy into the hands of both the specialist and the nonspecialist alike The successful application of both techniques, however, has been limited since the acquisition of high level IR and Raman interpretation skills is not widespread among potential users The full benefit of IR and Raman spectroscopy cannot be realized without an analyst with basic knowledge of spectral interpretation The second edition of FIGURE Skills required Application Notebook; F e b t ^ o W c , this book is a response to the continued rapid growth in the field of vibrational spectroscopy This has resulted in a corre­ sponding need to educate new users on the value of both IR and Raman spectral inter­ pretation skills To begin with, the end user must have a suitable knowledge base of the instrument and its capabilities Furthermore, they must develop an understanding of the sampling options and limitations, available software tools, and a fundamental under­ standing of important characteristic group frequencies for bolh IR and Raman spec­ troscopy A critical skill set that an analyst may require to solve a wide variety of chemical questions and problems using vibrational spectroscopy is depicted in Fig below , vlb™t,onal s p e c tro s co p e Adapted from McDowall, R D Spectroscopy PREFACE Selecting the optimal spectroscopic We have attempted to provide an rntete cto o u e to solve complex chemical prob- grated approach to the important group 1e n c o u n t e r e d by the analyst requires the frequency of both IR and Raman spectrosuser to develop a skill set outlined in Fig A copy An extensive use of graphics is used to krmwledge of spectral interpretation enables describe the basic principals of vibrational the user to select the technique with the most spectroscopy and the origins of group frefavorable selection of characteristic group quencies The book includes sections on frequencies, optimize the sample options, basic principles in Chapters and 2, mstrurincluding accessories if necessary), and use mentation, sampling methods, and quanhsuitable software tools (both instrumental tative analysis in Chapter 3, a discussion of d chemometric) to provide a robust, important environmental effects m Chapter sensitive analysis that is easily validated and a discussion of the origin of group In this book we provide a suitable level of frequencies in Chapter Chapters and information to understand instrument capaprovide the essential background to underhilities sample presentation, and selection of stand the origin of group frequencies to arious accessories The main thrust of this assign them in a spectra and to explain why text is to develop a high level of spectral group frequencies may shift Selected probterpretation skills A broad understanding lems are included at the end of some of these the bands associated with functional groups chapters to help highlight important points, for both IR and Raman spectroscopy is the Chapters and provide a highly detailed basic spectroscopy necessary to make the most description of important characteristic group of the potential and set realistic expectations frequencies and strategies for interpretation for vibrational spectroscopy applications in of IR and Raman spectra £ u u , both academic and industrial settings Chapter is the culmination of the book ° A rimary goal of this book has been to and provides 156 interpreted paired IR and fnllv integrate the use of both IR and Raman Raman spectra arranged in groups The n dv as spectral interpretation tools, selected compounds are not intended to spectroscopy H inlecrated the discussion provide a comprehensive spectral library but f IRS and Raman group frequencies into rather to provide a significant selection of A fferent classes of organic groups This is interpreted examples of functional group ° , w i with naired generalized IR and frequencies This resource of interpreted IR su p p lem en ted w ith p ^ nu^ erQUS tables that and Raman spectra should be used ^ T c u ^ s e d in the text, and finally referenced art> , u™ f„iiv interpreted IRand Raman 103 n-^This fullv^integrated approach to IR SPHRnman interpretation enables the user to uttiize the strengths of both techniques while also recognizing their weaknesses verify proposed assignments that the user will encounter The final chapter is comprised of the paired IR and Raman spectra of 54 different unknown spectra with a correspending answer key help C H A P T E R Introduction: Infrared and Raman Spectroscopy Vibrational spectroscopy includes several different techniques, the most important of which are mid-infrared (IR), near-IR, and Raman spectroscopy Both mid-IR and Raman spec­ troscopy provide characteristic fundamental vibrations that are employed for the elucidation of molecular structure and are the topic of this chapter Near-IR spectroscopy measures the broad overtone and combination bands of some of the fundamental vibrations (only the higher frequency modes) and is an excellent technique for rapid, accurate quantitation All three techniques have various advantages and disadvantages with respect to instrumenta­ tion, sample handling, and applications Vibrational spectroscopy is used to study a very wide range of sample types and can be carried out from a simple identification test to an in-depth, full spectrum, qualitative, and quantitative analysis Samples may be examined either in bulk or in microscopic amounts over a wide range of temperatures and physical states (e.g., gases, liquids, latexes, powders, films, fibers, or as a surface or embedded layer) Vibrational spectroscopy has a very broad range of applications and provides solutions to a host of important and challenging analytical problems Raman and mid-IR spectroscopy are complementary techniques, and usually both are required to completely measure the vibrational modes of a molecule Although some vibra­ tions may be active in both Raman and IR, these two forms of spectroscopy arise from different processes and different selection rules In general, Raman spectroscopy is best at symmetric vibrations of nonpolar groups, while IR spectroscopy is best at the asymmetric vibrations of polar groups Table 1.1 below briefly summarizes some of the differences between the techniques IR and Raman spectroscopy involves the study of the interaction of radiation with molec­ ular vibrations but differs in the manner in which photon energy is transferred to the mole­ cule by changing its vibrational state IR spectroscopy measures transitions between molecular vibrational energy levels as a result of the absorption of mid-IR radiation This interaction between light and matter is a resonance condition involving the electric dipolemediated transition between vibrational energy levels Raman spectroscopy is a two-photon inelastic light scattering event Here, the incident photon is of much greater energy than the Infrared arul Raman S/vctri isco/iy, Sea >rul F.dilian http://dx.doi.oni/10.1016/B 97 8-0-12-804162-8.00001 -X © 2018 F.lsevicr Inc All rights reserved Appendix: IR Correlation Charts INFRARED GROUP FREQUENCY CORRELATION CHARTS 3400 3300 3200 3100 3000 290 280 2700 1700 1600 1500 1400 130 "i - - - r C H 3, C H 2, C H , b en d R-CH — 1" -CH(CH3) - c (c h 3)3 r - c h 2- r r- o- ch3 o =c - c h 2n =c - c h 2- >c =c h 0=C-H I o =c - c h Si-CH, 261 1200 262 2400 APPENDIX: IR CORRELATION CHARTS 2300 2200 2100 200 1900 1800 1900 1800 1700 1600 1500 140 C =0 str Cyclic anhydride ■I ■ - R-CO-O-CO-R R-CO-CI m y Lactone ■ R-CO-O-R -i CONH-CO-O-R - H-CO-O-R ■ R-CO-H _ Conj-CO-H R-CO-R mm Conj-CO-R m Conj-CO-Conj I —i I R-CO-OH dimer — R-CO-N R-C02' 11 _ _ _ 1300 263 APPENDIX: IR CORRELATION CH ARTS 1400 1300 1700 1200 1600 1100 1500 1000 1400 900 1300 800 1200 1500 1100 1400 1300 1000 1200 900 1100 800 700 1000 900 800 Index Note: 'Page numbers followed by "f" indicate figures and "t" indicate tables.' A A See A b so rp tion intensity (A ) a See A n gle of in ciden ce (a ) Alkane grou p s, sp ectra-stru ctu re correlation s of, 87 , 87f, 8 t fluorinated, 148 A b sorb ed rad iation , A b sorp tion intensity (A ), in atten u ated total A lk oxysilanes, sp ectra-stru ctu re correlation s of, 149 Allyl thiourea, 181 f reflectan ce, A cetam id e, 155 A ce tam id eo xim e, 156, 183f AMD A ce to h y d ro x a m ic a cid , 155 A ceton e, 15 , 70f A ceton itrile, 15 , 62f A cetylen e g ro u p , sp ectra-stru ctu re correlation s of, -1 A cetylen ic c o m p o u n d s, sp e ctra-stru ctu re correlation s of, - A cid h alides, sp e ctra -stru ctu re correlation s of, 4 -1 A cidic p ro to n s, sp ectra-stru ctu re correlation s of, 14 A cry lam id e, 55, 176f A crylon itrile, , 162f A D See A rra y d e te cto r (A D ) A ce to h y d ro x a m ic acid , 178f A E T A C See P oly- -(acryloyloxy)-Ethyltrim ethyl A m m o n iu m C hloride (A E T A C ) A lcoh ols g ro u p frequencies of, 119t IR a n d R am an sp ectra of, 156, 185f—186f sp e ctra -stru ctu re correlation s of, 1 —121, 118f, 1 t A ld eh y d es sp e ctra -stru ctu re correlation s of, 4 —145 stretch in g vibration for, 115 A liphatic g ro u p s IR and R am an spectra of, 153, 159f sp ectra -stru ctu re correlation s of, —92, 87f, 8 t, 89f, t, 91 f, - 4 ju gated , —112, t—9 3t A liph atic p rim a ry am ines, IR and R am an spectra of, -8 , 86f A liphatic seco n d ary am ines, IR and R am an spectra of, - , f band assignm ents for, 55, t diffuse reflectance of, —61, 60f FT-IR calibration plot of, 55 , 58f FT -R am an calibration plot of, 5 —59 , 59f quantitative analysis of, —61 spectra of, 55, 56f A m ide com p ou n d s IR and R am an spectra of, 155, 175f, 7 f - f sp ectra-stru ctu re correlation s of, 115, —125 A m ines IR and R am an spectra of, 156, 189f—190f sp ectra-stru ctu re correlation s of, 144 deform ation vibrations, 146 A m ine salts IR and R am an spectra of, 156, 189f—190f spectra-stru ctu re correlation s of, 146 A m ino (N H ) grou p correlation ch art for, —263 environm ental dep end ence of vibrational spectra and , 6 —67 IR and R am an spectra of, , f sp ectra-stru ctu re correlations of, 42—143, 151 3-A m in o pentane, 246 A m m eline, 136, 180f A m m oniu m , spectra-stru ctu re correlation s of, 129 A m m onium chloride, 155, 203f A m plitude in classical harm onic oscillator, , lOf dipole m om ent m odulation by, 18—19, 18f vibrational, dipole m om en t and, 15 A nalyte concentration, IR and R am an signal and , 52 A ngle of incidence (a) for attenuated total reflectance, —44, 42f in dispersive system s, - , 30f refractive index and, 35, 36f triatom ic m olecule stretches and, 78, 78f 266 Angle of radiation (3), in dispersive systems, - , 30f Anharmonic oscillator, potential energy of, 13, 13f Anhydrides IR and Raman spectra of, 5 ,171f—174f spectra-structure correlations of, 113—115 INDEX Bent triatomic molecule, as coupled oscillators, - 7 , 77f Benzalkonium chloride, -2 Benzamidine HC1, 156, 183f Benzene See also 1,3,5-Trisubstituted benzene, in-phase stretching of Aniline, 156, 190f Anisole, 241 Anti-Stokes Raman scattering, 17, 17f classical description of, —51, 47f A rom atic rings correlation chart for, 261—263 IR and Raman spectra of, 154, f-1 6 f spectra-structure correlations of, 146, 150 benzene, 9 -1 , 99f, lOOt, lOlf—102f conjugated, —112, 92t—93t fused, 106, 107t heterocyclic, 106—112, 107f A rray detector (AD), signal-to-noise ratio and, 31 Aryl CH w ag, -1 , 103t, 104f Aryl groups, spectra-structure correlations of, 143 Aryl oxim e, 182f Asym m etric vibrations, IR spectroscopy for, Atm ospheric compensation, for sample preparation, 36, 138 A tom ic masses in diatom ic oscillator, 1 in GF m atrix method, 25 Attenuated total reflectance (ATR), —44, 42f, 44t, 45f with microscopy, 49 of starch, -1 , 138f Azobenzene, 192f A zo com pounds IR and Raman spectra of, 157, 191 f—192f spectra-structure correlations of, 145 Azodicarbonam ide, 24 —250 Azo-/crf-butane, 157, 191 f B 3- See Angle of radiation (3) B3LYP function, 27 BaF2, in IR transmission, 34, 35t Band assignm ents, for PAM -AETAC samples, 55, 57t Band intensities, for sample preparation, 35, -1 Band shape, in IR and Raman vibrational bands, Baseline, for sam ple preparation, 36 3-21G Basis set, 27 6-31G Basis set, 27 Basis set, in vibrational spectra assessment, 27 Beam splitter, in Michelson interferometer, 32, 33f Bending vibration See Deformation vibrations Cartesian coordinate displacements for, , 9f center of sym m etry of, 19, f elementary ring vibrations of, , f m ono- and di-substituted, 1 , 1 f normal ring m odes of, 86 , 87f, 9 - 0 , 99f, lOOt spectra-structure correlations of, 9 - stretching vibration of, - , 83f Benzoic acid, 155, 174f Benzoxazole, 169f Benzothiazole, 169f Benzyl alcohol, 240 BH stretch, spectra-structure correlations of, 144 Bipolymers, IR and Ram an spectra of, -2 , 205f—210f Bismaleimide, 179f Bisphenol A epoxy, 187f /3-Bis(trifluoromethyl)benzene, 244 BLYP function, 27 B—N type com pounds group frequencies of, 125, t-1 t IR and Raman spectra of, 125, 126f spectra-structure correlations of, -1 B - O type com pounds group frequencies of, 125, t-1 t IR and Raman spectra of, 125, 126f spectra-structure correlations of, -1 oltzmann s law, in Ram an scattering, 17 ond angle, stretching frequency and, 116 Boric acid, 158, 2 f Boronic acid com pound, IR and Ram an spectra of, 157 3-Bromo toluene, 157, l f 1-Bromo-hexane, 157, l f 1-Butanol, 156, 185f # n-Butanol, 240 N-(Butoxymethyl) acrylam ide, 176 f n-Butyl acetate, 5 , f t-Butyl alcohol, 56, f Butylated hydroxy toluene, - n-Butyronitrile, 240 c C a F , m IR tran sm issio n , , t a ciu m p alm itic acid sa lt, IR sp e c tro s c o p y vs R am an s p e ctro sc o p y , , f C a lcu la tin g , v ib ration al s p e ctra , - C a p illary film, 267 INDEX C onfocal R am an m icroscop y, —5 , 50f C arb on d ioxid e (C O 2) cen ter of sy m m e try of, 19, 20f Ferm i reso n an ce an d , —73, 71 f fund am en tal vibration s for, , 9f IR g a s p h ase tou rs of, —64, 64f C arb on ates, sp e ctra -stru ctu re correlation s of, 4 -1 C arb on tetrach lorid e, 192f C arb on yl g ro u p s en v iron m en tal dep en d en ce of vibrational spectra C —N stretchin g vibrations correlation ch art for, —263 grou p frequencies of, 119t IR and R am an sp ectra of, 118, 118f sp ectra-stru ctu re correlation s of, 1 —121 C —O stretchin g vibrations correlation ch art for, —263 grou p frequencies of, 119t IR and R am an spectra of, 118, 118f sp ectra-stru ctu re correlation s of, 1 —121 C = stretching vibrations, correlation ch a rt for, -2 an d , g ro u p frequencies for, 14t factors th at effect, 113f, 1 —117 IR an d R am an sp ectra of, 113f review of, 1 —115 sp ectra -stru ctu re correlation s of, 11 —117, 113f, 114t CCb See C arb on dioxid e (CQ>) C om bination ban ds, an h arm on ic oscillators an d , 14 C om m u nication skills, for sp ectra in terp retatio n , 135 C om pu ter-based libraries, for spectral in terp retatio n , -1 C arb oxylic acid dim ers h y d rogen bond ing in, 67 IR an d R am an spectra of, 85, f sp e ctra -stru ctu re correlation s of, 1 —114 C onfiguration interaction (C l) m ethod, 27 C onjugation effects, in carbonyl grou p s, 117 C oordinate analysis, w ith G F m atrix m eth o d , 25 C orrelation charts C artesian co o rd in ate disp lacem en ts for C H 3, C H 2, and C H , 4, 4f develop m en t of, g rou p frequency, —263 Coupled oscillators for h arm on ic oscillator, 9, 9f for X Y m olecules, —2 , f C a st films bent triatom ic m olecule, - 7 , 7 f—78f equal com binations, 79, 80f, 1 p rep aratio n of, 38 of starch , - , 138f grou p frequencies of, —79, 76f—79f linear aliphatic system s, 78, 79f linear m olecules, —76, 76f rules of thum b for, —83 unequal com binations, 82f C -B r g ro u p frequencies of, 123, 124t IR an d R am an spectra of, 123, 124f, 157, 193f—194f sp ectra-stru ctu re correlation s of, 123, 124f, 124t C -C l grou p frequencies of, 123, 124t IR and R am an spectra of, 123, 124f, 157, 193f—194f sp e ctra-stru ctu re correlations of, 123, 124f, 124t w av en u m b er regions for, 1 , t C ellulose, 158, 208f C en ter of sym m etry, spectroscopy and , 19, f Crystalline lattice vibrations, —70, 9f—70f Crystallinity, in IR spectra, 65, 6 f C —S—C com pou nd s IR and R am an spectra of, 123, 124f spectra-structure correlations of, —125, 124f, 124t C —S—S—C com pou nd s IR and R am an spectra of, 123, 124f C H See M ethylene (C H 2) C H See M ethyl (C H 3) C hain length, vibrational frequency and , 78, f spectra-structure correlations of, —125, 124f, 124t C yan uric acid, spectra-structure correlation s of, -1 , 107t C yclohexane, 153, 159f, 239 n-C yclohexane, IR and R am an spectra for, 91 f C yclohexanone oxim e, 182f C hem om etric data analysis, 136 Cyclopropyl rings, spectra-structure correlations of, 143 C H bend, correlation ch a rt for, —263 C H stretch, correlation ch art for, 4, 4f, —263 3-C h loro toluene, 157, 194f 1-C h loro-octane, 157, 193f C l See C on figuration interaction (C l) m ethod C lassic harm onic oscillator, —1 , lOf, l i t C potential energy of, N co m p ou n d s, IR and R am an spectra of, 156, 183f—184f D Data analysis techniques, for spectra interpretation, 135 Deform ation vibrations See also X —H deform ation of am ines, spectra-structure correlation s of, 146 of C O 2, , 9f 268 Deformation vibrations ( Continued) Fermi resonance and, —73, 71 f INDEX Dipole m oment amplitude m odulation of, 18—1 , 18f in IR absorption, 15, 15f of H 20 , , 9f of linear aliphatic system s, 78, 79f of methyl groups, spectra-structure correlations of, -1 of methylene groups, spectra-structure correlations of, -1 Degenerate vibrations, 22 Degrees of freedom calculating, m olecular motion and, , 9f Demountable cell, 37 Density functional theory (DFT) methods, 27 DetalahthpereTlyhtemi, 171 f Dextrin, 242 DFT See Density functional theory (DFT) methods Dialkyl acetylenes, spectra-structure correlations of, 98 Dialkyl sulfates, spectra-structure correlations of, 128 Diamond, for IR transmission, 34, 35t Dialkyl dithiophosphoric acid, 199f Diatomic molecule Cartesian coordinate displacements for, 9, 9f as classic harmonic oscillator, 10—11, lOf, l i t classical vibrational frequency for, dipole moments of, 14—15, 15f potential energy of, 12—13, 13f wavenum ber regions for, 1 , t Dibasic phosphate, spectra-structure correlations of, 148 Dibasic sodium phosphate, 158, 200f n-Dibutyl amine, 156, 188f n-Dibutyl ether, 156, 186f n-Dibutyl phosphonate, 158, 199f Diethyl amine HC1, 189f Diethylene glycol, 156, 186f Diffraction grating, in dispersive systems, 29—30, 30f Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), 4 —46 Dimethyl carbonate, 155, 170f N,N-Dimethyl formamide, 155, 177f Dimethyl malonate, 155, 171 f 4- Dimethyl pentane, 239 Dimethyl siloxane polymer, 241 Dimethyl sulfoxide, 195f Dimethyl terephthalate, 155 1.3- Dimethyl urea, 155, 176f 2.5 - D im ethyl-l,5-hexadiene, 239 Dioctyl phthalate, 245 Dicyandiamide, 182f 1.4- Dioxane, 153—154, 160f -(4 ,6 -D ip h e n y l- l/3/5 - t r i a z i n e - - y l ) - alkyloxy phenol, hydrogen bonding in, 68 in Raman scattering, 15—1 , 16f vibrational am plitude and, 18 Diphenyl chlorophosphate, 199f Dispersive Ram an instrum entation, —31, 31 f Dispersive system s, - Dissociation limit, anharm onic oscillator and , 14 2,6-Di-T-butyl phenol, 6 , 186f Dodecyl sulfate salt, , 196f Double bond correlation chart for, - cum ulated, spectra-structure correlations of, 92, 98, 1 -1 force constant for, 1 , l i t IR and Ram an spectra of, 154, 161f—162f w avenum ber regions for, 1 , t Double bond stretch, , f dp See Effective penetration depth (dp) DRIFTS See Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) E Ec/- See Electronic energy (Ed) Effective penetration depth (dp), in attenuated total reflectance, 43 Electric fields dipole moments and, 15, 15f in electromagnetic radiation, 7, 7f in Raman scattering, 15—18, 16f—17f Electromagnetic radiation, —8, 7f—8 f absorption of, , f parameters of, - in Raman scattering, 15—18, 16f—17f Electronic energy (E^/), - Empirical characteristic frequencies, for vibrational spectroscopy interpretation, 2, 3f Empirical force fields in coordinate analysis, 25 in GF m atrix m ethod, 25 for molecular force field, —27 Energy See also Potential energy (PE) anharm onic oscillator and, 13 photon absorption and, f Environmental dependence, of vibrational spectra, 5 -6 crystalline lattice vibrations, 68—70, 69f—70f Eermi resonance, - , f -7 f , 72t hydrogen bonding, 6 —6 , 67f s°lid, liquid, gaseous states, —65, 64f—66f Epichlorohydrin, 156, 187f Epoxy rings, spectra-structure correlations of, 143 269 INDEX ,2 -E p o x y p e n ta n e , Fu n d am en tal transition s, h arm o n ic a n d a n h a rm o n ic E ro/ See R otation al en erg y (E rof) oscillators an d , 14 F u n d am en tal vibration al sp e ctru m , 3, f E sters, 1R a n d R a m a n sp e ctra of, 155, f-1 f E thers g ro u p freq uencies of, 1 t IR a n d R a m a n sp e ctra of, , 87f—188f s p e c tra -s tru c tu re correlation s of, 1 —121, 11 t Fu ran s, 167f in-plane vibration s of, 1 , l i l t —1 t Fu ran s, sp ectra-stru ctu re correlation s of, —1 G n-Ethyl a c e ta m id e , Ethyl c a rb a m a te , 5 , 178f G aseou s state, env iron m en tal d ep en d en ce of vibration al sp ectra in, —65 Ethyl cellu lose, , f G au ssian -ty p e orbitals (G TO ), in ST O -3G b asis set, Ethyl m eth y l sulfide, E th y len es, sp e ctra -stru ctu re correlation s of, G F m atrix m eth o d , co o rd in ate an alysis w ith , 25 a-o -G lu cose, 246 G lycine, 155, 174f E Vi\j Sec V ib ration al en erg y ( E ^ ) F F ar-in frared (Far-IR ) sp e ctro sco p y , frequencies of, 14 Ferm i re so n a n ce id ealized , , 71 f selected g ro u p s a n d , t vib ration al sp ectra a n d , —7 , f—72f Flu orin ated alk an e g ro u p s, sp ectra-stru ctu re co rrelatio n s of, 148 F lu o rin e c o m p o u n d s , IR an d R am an sp e ctra of, 157, 93f—194f G lycolic acid , 155, 173f G roov e sp acin g, in d isp ersive sy stem s, 29 G rou p frequencies of alcohols and eth ers, 119t of boron co m p o u n d s, 125, t—127t of carb onyl grou p s, 114t factors th at effect, 1 —117, 113f correlation ch arts of, —2 63 coup led oscillators, —79, 6f—8 0f of halogen com p ou n d s, 124t of in organic ^com pounds, 126t—127t, 130 -F lu o ro toluen e, 15 , 194f, 24 Flu orolu b e, FT -IR sp e ctru m of, 39f of nitrogen containing co m p o u n d s, t, 2 origin of, —83 F o rce sta n t (K) oscillator com bin ation rules of th um b, —83, 80f, 1, 82f—83f fo r b o n d ty p e s , 1 , l i t in c la s sica l h a rm o n ic o scillato r, in G F m a trix m e th o d , 25 stre tc h in g fre q u e n cies a n d , 116 F ractio n a l lin e a r ca lib tio n eq u a tio n s, F re q u e n c y of e le ctro m a g n e tic radiation , —8, 7f in IR ab sorp tion , 15 in IR an d R am an vibrational ban ds, of p h oto n s, —8, 7f vibration al, classical, 10, Of FT -IR calib ration plot for A M D -A E T A C cop o lym ers, 55, 58f of P A M -A E T A C sam p les, 55, 58f FT -IR sp ectro sco p y in terferom eter for, —3 , 33f of P A M -A E T A C sam p les, - 5 , 56f ratio m ethod for, —54 FT -R am an calib ration plot for A M D -A E T A C cop o lym ers, 5 , 58f of P A M -A E T A C sam p les, 5, 58f FT -R am an sp ectro sco p y in terferom eter for, 33f of P A M -A E T A C sam p les, 55, 56f ratio m ethod for, —54 of ph osph orus com p ou n d s, 125, t—127t of silicon co m p ou n d s, 125, 12 t—127t of sulfur com p ou n d s, 125, 12 t—127t X —H stretchin g g rou p , —86, f G rou p T heory sy m m etry and , 19 for vibrational sp ectrosco p y in terpretation, , f GTO Sec G au ssian -type orbitals (G TO ) H H See H y d rogen (H ) H 2O See W ater (H 2O) H alogen -carb on stretch, sp ectra-stru ctu re correlation s of, -1 H am m et constan t, m ethylene grou p correlation w ith, 97, 97f H arm onic oscillator C artesian coord in ate disp lacem en ts for, 9, 9f classic, - 1 , Of, l i t - t potential energy of, 12, 13f quantum m echanical, 12—14, 13f H artree-Fock (H F) m ethod, 27 H eisenberg's uncertainty principle, h arm onic oscillator and, 12—13, 13f 270 Heptane, 153, 159f n-Heptane IR and Raman spectra for, 91 f IR spectroscopy v Raman spectroscopy, 136, 137f ns-3-Heptene, ,1 f trans-3-Heptene, 154, 161 f Hetero-aromatic rings, spectra-structure correlations of, 1 - 1 Heterocyclic arom atic five-membered rings, spectra-structure correlations of, 1 —1 , 1 If Heterocyclic arom atic six-membered rings, spectra-structure correlations of, 106—112, 107f pyridines, 107—108, 109t—1 lOt triazines and melamines, 108—110 Heteronuclear diatomic molecule, dipole moments of, -1 1-Hexadecanol IR and Raman spectra of, 156, 185f IR spectroscopy vs Raman spectroscopy, 136, 137f n-Hexane, IR and Raman spectra for, 91 f 1- Hexane sulfonic acid sodium salt, 245 - Hexanone, 243 1- Hexene, 154, 161f - Hexyne, 240 HP See Hartree-Fock (HF) method H om onuclear diatomic molecule, dipole moments of, -1 Hydrogen (H 2), center of sym m etry of, 19, 20f Hydrogen bonding in acidic proton vibrational frequencies, 144 in am ino and hydroxy stretching vibrations, -1 environmental dependence of vibrational spectra and, 6 - , 67f intramolecular, 68 4-H ydroxy benzaldehyde, 155, 172f H ydroxy (OH) group environmental dependence of vibrational spectra and, 66 IR and Raman spectra of, 85, f spectra-structure correlations of, 142—143 2-H ydroxy-4-(m ethoxy)-benzophenone, hydrogen bonding in, 68 H ydroxypropylm ethyl cellulose, 158, 209f 2-H ydroxypyridine, spectra-structure correlations of -1 , 107f I identification, spectral databases and interpretation for, 136 Imidazole, 168f Imidazole hydrochloride, 168f 2-lmidazolidinethione, 156, 181 f INDEX 2-Imidazolidone, 5 , 177f Indole, 169f Imino com pounds, spectra-structure correlations of, 145 Impurities, identifying, 141 Infrared (IR) absorption process, 14—15, 15f dipole m om ent in, 14—15 frequencies in, 14 Infrared (IR) gas phase contours, of C O 2, —64, 64 Infrared (IR) spectroscopy See also FT-IR spectroscopy; Mid-infrared (Mid-IR) spectroscopy; Near-infrared (N ear-IR) spectroscopy analyte concentration and, 14 application of, ix center of sym m etry and, 19, f dispersive system s for, —30, 30f historical perspective on, —4 instrument developm ent for, interpretation of, 2, 135—151 Raman spectroscopy vs., —2 , t, , 137f sym m etry and, 19 tools for, - , 137f transmission, —41 Infrared (IR) transm itting m aterials, 34, 35t Inorganic com pounds IR and Ram an spectra of, 158, f—206f spectra-structure correlations of, 125, 126t—127t In-phase stretch of bent triatom ic molecule, —77, 77f—78f of CO 2, , 9f Fermi resonance and, 71, 71 f of H 20 , , f of linear molecules, —76, 76f In-plane vibrations of olefinic groups, , f of pyridines, -1 , 109t—llO t of pyrroles, furans, and thiophenes, 1 —1 , l i l t —1 t Instrumentation, - dispersive Reiman instrum entation, —31, 31 f dispersive system s, —30, 30f interferometric spectrom eters, 32—34, 3 f Ram an spectroscopy sam ple arrangem ents, 31, 32f for spectra interpretation, 29 Intensity in IR and Ram an vibrational bands, of Raman scattering, 16 w avenum ber vs., 17 Interaction effects, in carbonyl groups, 117 Interferometric spectrom eters, —34, 3 f Internal reflectance, in attenuated total reflectance, 41, 42f 271 INDEX Internal reflection elem ent (IR E), in attenuated total reflectan ce, 41 Interpersonal skills, for spectra interpretation, 135 In tram o lecu lar h y d ro g en bonding, IR absorp tion p rocess Sec Infrared (IR) absorption p ro ce ss IR g as ph ase tou rs See Infrared (IR) gas phase co n to u rs IR sp e ctro sco p y See Infrared (IR) sp ectrosco p y IR tran sm ittin g m aterials See Infrared (IR) tran sm ittin g m aterials IRE See Internal reflection elem ent (IRE) Isoam yl nitrite, 157, 19 Of M elts, p reparation of, 41 M esom eric effects, in carb onyl g ro u p s, 116 M eta (3) chlorophenol, M etal oxides, sp ectra-stru ctu re correlation s of, 151 M eta-tolyl boronic acid , 157, 192f M ethane sulfonic acid , 157, 195f M ethanol, 156, 184f M ethoxy group, spectra-structure correlations of, 143—144 M ethyl (C H ) bend, correlation c h a rt for, —2 M ethyl (C H ) grou p s deform ation vibrations of, sp ectra-stru ctu re correlation s of, —147 sp ectra-stru ctu re correlation s of, 87, 8 t, —144 Isobutyl am in e, 156, 188f 1-M ethyl naphthalene, 239 Iso cy an u ric acid , h y d rogen bonding in, 6 —67 M ethyl (C H ) stretch, correlation ch art for, 4, 4f, Isooctane, 153, 159f -2 M ethylene (C H 2) bend, correlation ch art for, - Isopropyl alcoh ol, 136, 184f Isopropyl eth ylth io n ocarb am ate, 181f Isopropyl nitrate, 156, 191f Isoquinolines, sp ectra-stru ctu re correlation s of, 146 K M ethylene chloride, 193f M ethylene (C H 2) grou ps deform ation vibrations of, sp ectra-stru ctu re correlations of, 46—147 H am m et constan t correlation w ith, 97, 7f spectra-stru ctu re correlation s of, 87, 8 t, —144 K See F o rce stan t (K) M ethylene (C H 2) stretch, correlation ch art for, 4, 4f, KBr disc -2 4-M ethylim idaxoIe, 250 4-M ethyl-pyrid in e-3-b oronic acid, 248 Iso tactic p olyethylene, 158 p rep aratio n of, —4 1, 40f KBr w in d o w s, in IR transm ission, 34, 35t K etones, stretchin g vibration for, 115 K RS-5, in IR transm ission, 34, 5t K ub elk a—M unk equation, in DRIFTS, - L L acton es, sp ectra-stru ctu re correlations of, 44—145 L am b ert—B eer law in absorption sp ectrosco p y, 14 in atten u ated total reflectance, —43 in q u antitative analysis, 52 Linear m olecules in-phase stretch of, —76, 76f m olecular m otions for, 9, 9f ou t-o f-p h ase stretch of, —76, 76f Liquids environm ental dependence of vibrational spectra in, 65 p rep aration for, —38 M M agn etic fields, in electrom agnetic radiation, M aleate, 172f M aleic an h yd rid e, 172f M CSF See M ulti-configuration self-consistent field (M C SF) m ethod M elam ines, —110, 154, 166f M ethyl succinarrude, 179f M ichelson interferom eter, 32, 33f M icroscopy, —51 reflection IR, 49 transm ission IR, —50 M id-infrared (M id-IR) spectroscopy application of, frequencies of, 14 R am an spectroscopy vs., 1, 2t M id-IR See M id-infrared (M id-IR) sp ectrosco p y M irror, in M ichelson interferom eter, 32, 33f M olecular force field, 25 M olecular geom etry, in C,F m atrix m ethod, 25 M olecular m otion d egrees of freedom and, , 9f of linear m olecules, , 9f of non-linear m olecules, , 9f M olecular vibrational kinetic energy, in G F m atrix m ethod, 25 M oller Plessant perturbation (M P2) m ethod, 27 M onobasic phosphate, spectra-stru ctu re correlations of, 148 M orpholine, 160f MP2 See Moller Plessant perturbation (M P2) m ethod M ulti-configuration self-consistent field (M CSF) m ethod, 27 272 N INDEX Out-of-phase stretch of bent triatomic molecule, 76—77, 77f—78f NaCl windows, in IR transmission, 34, 35t Napthalenes, spectra-structure correlations of, 106, 107t Near-infrared (Near-IR) spectroscopy application of, frequencies of, 14 Raman spectroscopy vs., 1—2, 2t Near-IR See Near-infrared (Near-IR) spectroscopy Newton's second law, with GF matrix method, 26 NH group See Amino (NH) group of COz, , 9f of H 20 , , 9f of linear aliphatic systems, 78, 78f of linear groups, -8 , 82f of linear molecules, 75—76, 76f Out-of-plane vibrations of olefinic groups, 96f, 97 of pyridines, 107—1 ,109t NH group IR and Raman spectra of, -8 , 86 f spectra-structure correlations of, 151 Overtones, anharmonic oscillators and, 14 Oxazole, 168f Nitrates in-phase stretching of, 19—20, 21 f organic, spectra-structure correlations of, 145 spectra-structure correlations of, -1 Nitrites, organic, spectra-structure correlations of, 145 Nitrogen containing compounds group frequencies of, t, 2 IR and Raman spectra of, 105, 106f spectra-structure correlations of, 105—108, 106—107t, 106f 2-Nitropropane, 137, 191 f Nitroso groups, spectra-structure correlations of, 127 P N O compounds group frequencies of, t, 2 IR and Raman spectra of, 122, 122f spectra-structure correlations of, 2 -1 N-O stretching vibrations, correlation chart for, -2 Non-linear molecules, molecular motions for, , 9f Non-polar groups, Raman spectroscopy for, Nujol Mull FT-1R spectrum with, 36, 37f, 39f preparation of, -4 , 39f of starch, 137—138 Nylon ,6 , 158, 207f o n-Octane, IR and Raman spectra for, 91f 1-Octyne, 154, 162f OH group See Hydroxy (OH) group Olefinic compounds correlation chart for, 261—263 spectra-structure correlations of, 145, -1 Olefinic groups in-plane vibrations of, -9 , 94f out-of-plane vibrations of, 96f, 97 Olefinic groups, spectra-structure correlations of, -9 , f, 96f Oleic acid, 155, 173f Palmitic acid, IR spectroscopy vs Ram an spectroscopy, ,137f Palmitic acid, 155, 173f PAM See Poly acrylamide (PAM) PAM-AETAC band assignments for, 55, 57t diffuse reflectance of, 59—61, 60f FT-IR calibration plot of, 55, 58f FT-Raman calibration plot of, 55—59, f quantitative analysis of, 54—61 spectra of, 55, 56f Paper, 241 PE See Potential energy (PE) n-Pentane, IR and Raman spectra for, 91 f Pentanoic anhydride, 171f PH stretch, spectra-structure correlations of, 129 Phenol, 156, 185f Phenyl acetate, 244 Phenyl boronic acid, 249 1,3-(Pheny lene)6 /s(l ,1 -d imethy lurea), 177f Phosphate, spectra-structure correlations of, 148 Phosphine oxide See also P - O com pounds Phosphine oxide, spectra-structure correlations of, 122f, 126t—127t Phosphoric acids, spectra-structure correlations of, -1 Phosphorus com pounds, IR and Raman spectra of, -1 , 197f—200f Phosphorus ester, spectra-structure correlations of, 122f, 126t—127t Photon energy, parameters of, 7—8 Photon frequency, parameters of, —8, f Photons, - absorption of, - , f parameters of, - , 7f in Raman scattering, 16, 16f Pipenidindione dioxime, 137, 183f Piperazine, 160f 273 INDEX P = com p ou n d s c o rre la tio n c h a r t for, —2 P y rim id in es, s p e c tra -s tru c tu re c o rre la tio n s of, P y rroles, 167f in -p lan e v ib ration s of, g ro u p freq u en cies of, , t—1 t IR a n d R a m a n s p e c tra of, , f P y rro les, sp e c tra -s tru c tu re co rre la tio n s of, 1 —1 s p e c tr a -s tr u c tu r e c o rre la tio n s of, —1 P —O c o n ta in in g c o m p o u n d s , sp e c tra -s tru c tu re Q co rre la tio n s of, 49 P o lar g r o u p s , IR s p e c tro s co p y for, P o lariz a b ility , in R a m a n sca tte rin g , 16, f—18f, Q u an titativ e an aly sis, —61 an aly te co n cen tratio n a n d , 14 e xam p les of, —61 o f P A M -A E T A C sam p les, —61 -1 ratio m eth o d , —54 P oly a c ry la m id e (P A M ) d iffu se re fle cta n ce of, —6 , 60 f Q u an tu m m ech an ical h arm o n ic o scillato r, —14, 3f poten tial en erg y of, , f FT -IR ca lib tio n p lo t of, 5 , f Q u an tu m m ech an ical m eth o d , for m o le c u la r force b an d a s sig n m e n ts for, 5 , t field, - F T -R a m a n ca lib tio n p lo t of, 5 —5 , f IR a n d R a m a n s p e c tra of, 15 , f Q u an tu m m ech an ics, vib ration al en e rg y in, 12 q u a n tita tiv e a n a ly sis of, —61 Q u in azo lin es, s p e c tra -s tru c tu re co rrelatio n s of, 46 s p e c tra of, 5 , f P o ly a c ry lic a c id , , f P o ly - -(a cry lo y lo x y )-E th y ltrim e th y l A m m o n iu m C h lo rid e (A E T A C ) Q u inolin es, s p e c tra -s tru c tu re co rrelatio n s of, 46 R R am an scatterin g b a n d a s sig n m e n ts for, 5 , t cen ter of s y m m e try an d , 19, 0f d iffu se re fle cta n ce of, —6 , f F T -IR ca lib tio n p lo t of, 5 , f F T -R a m a n calib ration plot of, 5 —5 , o f classical d escrip tio n of, —19, 18f in tensity of, 16 p ro cess of, —18, 16f—17f IR a n d R a m a n sp e ctra of, 58, Of q u a n tita tiv e an a ly sis of, —61 sp e c tra of, 5 , f P o ly b u ta d ie n e , , f P o ly e th y le n e o x id e , , f P o ly m e rs , IR a n d R a m a n sp e ctra of, —2 , f —2 f P o ly p ro p y le n e , f P o ly sty re n e , , f P o ly s ty re n e su lfo n ate salt, f P o ly te tra flu o ro e th y le n e , 158 P o ly v in y l alco h o l, , f P o ly v in y l p y rro lid o n e , 15 , f P o ta s siu m n itra te , 8, 2 f P o ten tial e n e rg y (P E ) o f a n h a rm o n ic oscillator, 13, 13f of h a rm o n ic o scillator, —13, 13f P rim a ry a m in e salts, sp e ctra -stru ctu re co rre la tio n s of, 2 -P ro p a n e th io l, P ro p y l a m in e HC1, 89f P y rid in e h y d ro ch lo rid e , 166f P y rid in e s in -p lan e v ib ration s of, —108, 109t IR a n d R a m a n sp e ctra of, - , 166f o u t-o f-p la n e v ib ration s of, —108, 09t s p e c tra -s tru c tu re co rre la tio n s of, —108, t—llO t, 146 R am an sp ectro sco p y See also F T -R am an s p e c tro s co p y an aly te co n cen tratio n a n d , 52 ap p licatio n of, d isp ersiv e R am an in stru m en tation for, —31, 31 f excitatio n w av elen g th selection, 2 —2 , 23 t h istorical p ersp ectiv e on, —4 in terp retatio n of, , —151 IR sp e ctro sco p y vs., 1, 2t, 136, 137f sam p le a rran g em en ts for, 31 , 32f s y m m e try an d , tools for, - , 137f R atio m eth o d , —5 fractional linear calib ration eq u atio n s for, R ayleigh light filters, , 31 f R ayleigh scatterin g classical descrip tion of, —19, 18f d isp ersiv e R am an in stru m en tation an d o scillatin g dipoles in, —9, f, —16 process of, —18, 16f R eflected rad iation , 43 Reflection infrared m icro sco p y , —50 A T R , - 4 , 44t, 45f D RIFTS, 4 - m icro sco p y w ith, —51 R efractive index an g le of in ciden ce and , 35, 36f for atten u ated total reflectan ce, —4 , 42f, 4 t, f 274 Ring vibrations, of benzene, ,102f Rotational energy (Erot), 7—8 3n-5 Rule-of-thumb, , 9f 3n-6 Rule-of-thumb, , 9f s Sample preparation, —36, 35t, 36f for attenuated total reflectance, 41 of cast films, 38 issues with, 136—139, 138f for liquids, 7—38 of melts, 41 of solid-powdered samples, - , f -4 f Sampling m ethods, 34—51 IR transmitting materials, 34, 35t m icroscopy, 49 reflection IR, —46 ATR, - 4 , 42f, 44t, 45f DRIFTS, 4 - techniques for, 4 —46 transmission infrared, -4 cast films, 38 liquids and solutions, 37—38 melts, 41 solid-powdered samples, —41, 39f—40f Scattered radiation, 35 Sealed am algam cell, 37 SH stretch, spectra-structure correlations of, 144 Signal-to-noise ratio (SNR), array detector and, 31 SiH stretch, spectra-structure correlations of, 144 Silica gel, 158, 204f Silicon dioxide, 241 Siloxane com pounds, IR and Raman spectra of, 158 Siloxane polym er, 158, 208f Single bond force constant for, 1 , l i t wavenum ber regions for, 1 , t Single bond stretch, 3, 3f Si—O containing com pounds correlation chart for, 26 —263 group frequencies of, 125, 126t—127t IR and Raman spectra of, 125, 126f spectra-structure correlations of, 125—130, 149 Six-membered rings, stretching w aves for, -8 , 83f Slater-type orbital (STO), 27 S- O compounds correlation chart for, 261—263 group frequencies of, 125, 126t—127t IR and Raman spectra of, 125, 126f spectra-structure correlations of, 125—130 Sodium acetate, 243 Sodium bicarbonate, 158, 202f INDEX Sodium carbonate, 158, 201 f Sodium carboxym ethyl cellulose, 158, 209f Sodium di-isobutyl dithiophosphate, 158, 200f Sodium isopropyl xanthate, , 196f Sodium m olybdate, 158, 203f Sodium perchlorate, 158, 203f Sodium sulfate, 158, 201f Sodium sulfite, 158, 201f Software tools, for spectral interpretation, -1 Solid state, environm ental dependence of vibrational spectra in, —65 Solid-powdered samples, preparation of, —41 Solutions, preparation for, 37—38 Solvents, identifying, 141 SOx com pounds, spectra-structure correlations of, -1 Spectral databases, for identification and structural verification, 136 Spectral database tools com puter-based, 140—141 for spectra interpretation, 135 Spectral interpretation, - com puter-based libraries and softw are tools for, -1 exam ine the spectrum , -1 problem definition, 141 spectral reference library hierarchy of quality, -1 Spectral reference libraries com puter-based, 140—141 hierarchy of quality of, - Specular reflectance, w ith m icroscopy, 4 —4 , 50 Spurious bands, sam ple preparation and, 139 Starch IR and Ram an spectra of, f, 137—138, 208f sample preparation of, -1 , 138f Stearic acid, 155, 174f STO See Slater-type orbital (STO) STO-3G basis set, 27 Stokes Raman scattering, 17, 17f classical description of, - , 18f Stretch See Double bond stretch; In-phase stretch; Out-of-phase stretch; Single bond stretch; Triple bond stretch Stretching frequencies bond angle and, 116 force constant and, 116 Stretching vibration for aldehydes, 115 of carbonyl groups, 1 -1 C —O, spectra-structure correlations of, 149 Fermi resonance and, —73, 71 f 275 INDEX h y d ro g e n bo n d in g in, - Sulfoxide See also S = co m p o u n d s for k etone, 15 Sulfoxides, sp ectra-stru ctu re correlation s of, 11 , 12 t—127t, 128 of six-m em b ered rings, - , 83 f S tre tc h -s tr e tc h in teraction , g ro u p frequencies of, 75, 76f Stru ctu ral verification, sp ectral d atab ases and in terp retatio n for, 136 S tru ctu re correlation s, w ith sp ectra, —151 0 -2 0 c m “ 1, 151 -4 c m “ 1, - Sulfur com p ou n d s, IR and R am an sp ectra of, 157, 195f—196f Sym m etric vibrations, R am an sp ectro sco p y for, S ym m etry cen ter of, 19, 20f G rou p T heory an d , 19 of in-phase stretch of linear m olecules, 3f, 76 0 -5 0 c m “ 1, 151 IR and R am an activ e vibrations, —22, f—2 2f 0 -7 0 c m “ 1, 150 of X Y ben t m olecule, —21, 22f 0 -6 0 c m “ 1, - -8 c m “ 1, 149 T -9 c m “ 1, 15 Talc, 158, 204f 0 -7 c m “ 1, 149 T aylor series, for G F m atrix m ethod, 26 Teflon, 207f -1 0 c m “ 1, 148 -1 c m “ 1, 14 0 -1 c m “ 1, - 4-T crf-butyltoluene, 239 Tetra-alkyl phosphonium AlCLt salt, 198f Tetra-n-butyl phosph onium Br salt, 198f T etrahyd rofu ran , 154, 156, 187f -1 c m “ 1, 146 T etram eth yl am m on iu m chloride, 156, 190f 6 -1 c m “ 1, 146 6 -1 0 c m “ 1, 145 1,2,3,5-T etram eth ylb enzene, 165f m -Tetram ethyl xylene d iisocyanate, 154, 165f Thiocarbonyl com pounds, , , 5 — -1 c m “ 1, 148 0 -9 0 c m “ 1, - -1 0 c m “ ', 145 0 -1 5 cm “ 1, 4 - 0 -1 0 c m “ 1, 144 0 -2 0 c m “ 1, 144 0 -2 0 c m “ \ - 4 0 -2 0 c m “ 1, 144 0 -2 cm “ 1, 143 0 -3 0 c m “ 1, -1 S u b eroh yd roxam ic acid , 178f Su ccinam ide, 179f Su lfanam ides, sp ectra-stru ctu re correlations of, 147 Sulfates in-phase stretchin g of, —20, f sp e ctra-stru ctu re correlation s of, 14 —148 Sulfinic acid s, sp ectra-stru ctu re correlations of, 147 Sulfonam ides, sp ectra-stru ctu re correlations of, t—127t, 128 Sulfonates, sp ectra-stru ctu re correlations of, t—127t, 128 Sulfones, sp ectra-stru ctu re correlations of, 118, t—127t, 128 Sulfonic acids, sp ectra-stru ctu re correlations of, 118, t—127t, 128 Sulfonic acid salts, spectra-stru ctu re correlations of, 118, 12 t—127t, 128 Sulfonyl chlorides, spectra-stru ctu re correlations of, t—127t, 128 Sulfonyl halides, spectra-stru ctu re correlations of, 118 Thiophenes, 167f in-plane vibrations of, 1 , l i l t —1 t spectra-stru ctu re correlations of, 1 , 1 If, l i l t —1 t Thiourea, 180f Toluene, 154, 163f para-Toluene sulfonic acid, 157, 195f Trans, /ra/is-2,4-h exad ien -l-ol, —242 Trans-2 -h exen -l-o l, 240 T ransm ission infrared, —41 of cast films, 38 of liquids and solutions, —38 of m elts, 41 m icroscopy w ith, 49 of solid-pow dered sam ples, —41, f - f T ransm itted radiation, 35 Triazines, spectra-structure correlation s of, 08—110 Triazine species, sp ectra-stru ctu re correlations of, 14b Tribasic sodium phosphate, 158, 200f n-Tributyl am ine, 156, 188f Tributyl borate, 249 Tri-n-butyl phosphine, 197f Tributyl phosphine oxide, 198f Tributyl phosphite, 157, 197f 2,4,6-Trichlorobenzoyl chloride, 4 —245 Trim ethyl am ine, 156, 189f 1.2.3- T rimethy Ibenzene, 164f 1.2.4- Trim ethylbenzene, 164f 1.3.5- Trim ethyIbenzene, lb 5f 276 INDEX Trimethyl isocyanurate, 155, 180f interpretation of, Triphenyl phosphine, 157, 197f Triphenyl phosphine oxide, 248 Triple bond correlation chart for, -2 force constant for, 11, l i t IR and Raman spectra of, 154, 162f spectra-stmcture correlations of, 144 wavenumber regions for, 11, 12t Triple bond stretch, 3, 3f 1,3,5-Trisubstituted benzene, in-phase stretching of, techniques for, Vibrational spectrum, 3, 3f Vinyl groups, spectra-structure correlations of, 150 w W ater (H 2O), fundamental vibrations for, , 9f Wavelength, of electromagnetic radiation, —8, 7f Wavenumbers in classical harmonic oscillator, 1 of electromagnetic radiation, 7—8, 7f intensity vs., 14 -2 , 21 f W avenumber regions, for diatomic oscillator groups, u 1 , 12 t Ureas, IR and Raman spectra of, 155 X V Vibrating mechanical molecular models, 3—4 Vibrational amplitude, dipole moment and, 18 Vibrational energy (E ^ ), - in quantum mechanics, 12 Vibrational frequency for bent triatomic molecule, 76—77, 7 f-7 f classical, 10, lOf for linear aliphatic systems, 78, 78f X-axis scale, for sample preparation, ,1 X —H deformation, vibrational spectrum for, 3, 3f X —H stretch correlation chart for, 261—263 vibrational spectrum for, 3, 3f X—H stretching group, IR and Raman spectra of, - , 86 f wavenumber regions for, 1 , t XY bent molecule Cartesian coordinate displacements, , f sym metry of, 19—20, f for linear molecules, -6 , 64f Vibrational quantum number, anharmonic oscillator a n d ,14 Vibrational spectroscopy advantages of, 51 application of, calculating, -2 environmental dependence of crystalline lattice vibrations, -7 , f-7 f Fermi resonance, -7 , 71 f—72f, 72t hydrogen bonding, 6 -6 , 6 f-6 f solid, liquid, gaseous states, -6 f-6 f XV2 type identical oscillators, 79, 80f, 811 m-Xylene, 163f o-Xylene, f-1 f Xylenes, 251 z Zero point energy, Zinc dimethyl dithiocarbamate, 157, 196f Zinc oxide, 204f ZnSe FT-IR spectrum with, 36, 37f in IR transmission, 34, 35t

Ngày đăng: 02/11/2023, 11:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN