1. Trang chủ
  2. » Giáo án - Bài giảng

Hh9 chuyên đề 12 tứ giác nội tiếp (53 trang)

53 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 4,22 MB

Nội dung

CHUYÊN ĐỀ HSG TOÁN HH9-CHUYÊN ĐỀ 12 TỨ GIÁC NỘI TIẾP A.KIẾN THỨC CẦN NHỚ - Hai đỉnh nhìn cạnh A  B  1 A B hai đỉnh kề nhìn cạnh CD Đặc biệt   CBD CAD 90 A, B đỉnh kề nhìn cạnh CD - Hai góc đối bù A  C  180  D  180 B Đặc biệt | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN TỐN A C  90 Góc = góc ngồi đỉnh đối diện A  BCx   góc ngồi C BCx Cùng cách điểm OA=OB=OC=OD Phương pháp giải a) Phương pháp Chứng minh cho bốn đỉnh tứ giác cách điểm Cho điểm I cố định tứ giác ABCD Nếu chứng minh điểm A, B, C, D cách điểm I, tức IA  IB  IC  ID điểm I tâm đường trịn qua điểm A, B, C, D Hay nói cách khác tứ giác ABCD nội tiếp đường trịn tâm I bán kính IA b) Phương pháp Chứng minh tứ giác có tổng góc đối 180º  180 B  D  180 tứ giác ABCD nội Cho tứ giác ABCD Nếu chứng minh A  C tiếp đường trịn CHUN ĐỀ HSG TỐN c) Phương pháp Chứng minh từ hai đỉnh kề cạnh nhìn cạnh hai góc   Cho tứ giác ABCD, chứng minh DAC DBC nhìn cạnh DC tứ giác ABCD nội tiếp đường trịn d) Phương pháp 4: Nếu tứ giác có tổng số đo hai cặp góc đối diện tứ giác nội tiếp đường trịn  B  D  tứ giác ABCD nội tiếp Cho tam giác ABCD Nếu chứng minh A  C đường tròn e) Phương pháp 5: Tứ giác có góc ngồi đỉnh góc đỉnh đối diện đỉnh nội tiếp đường tròn Nếu cho tứ giác ABCD chứng minh góc ngồi đỉnh A mà góc đỉnh C (tức góc C tứ giác đó) ABCD nội tiếp đường tròn f) Phương pháp 6: Chứng minh phương pháp phản chứng Chú ý: Có thể chứng minh tứ giác ABCD hình đặc biệt sau: Tứ giác ABCD hình thang cân, hình chữ nhật, hình vng Định lí Pto-lê-mê: Trong tứ giác nội tiếp, tích hai đường chéo tổng tích hai cặp cạnh đối diện Chứng minh GT Tứ giác ABCD nội tiếp (O) AC.BD  AB.DC  AD.BC KL   Láy E  BD cho BAC  EAD Þ ∆DAE ~ ∆CAB (g.g)  AD DE   AD.BC  AC.DE AC CB Tương tự: ∆BAE ~ ∆CAD (g.g)  BE AB  CD AC  BE AC CD AB (2) Từ (1) (2)  AD.BC  AB.CD  AC.DE  EB AC  AD.BC  AB.CD  AC.BD (điều phải chứng minh) | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN (1) TOÁN B.BÀI MINH HỌA I.MỘT SỐ TIÊU CHUẨN NỘI TIẾP Tiêu chuẩn Điều kiện cần đủ để bốn đỉnh tứ giác lồi nằm đường tròn tổng số đo hai góc tứ giác hai đỉnh đối diện 1800 A D B  C  1800  D  C B Điều kiện để tứ giác lồi ABCD nội tiếp là: A x 180   Hệ quả: Tứ giác ABCD nội tiếp BAD DCx  Ví dụ Cho tam giác ABC vuông A Kẻ đường cao AH phân giác AD góc HAC   Phân giác góc ABC cắt AH,AD M, N Chứng minh rằng: BND 900 Phân tích hướng dẫn giải:   Ta có MHD 900 Nếu MND 900 A tứ giác MHDN nội tiếp Vì M thay trực tiếp góc  BND 900 ta chứng minh B H N D C   tứ giác MHDN nội tiếp Tức ta chứng minh AMN ADH 1 1         ABC,HAD  HAC Thật ta có AMN , NDH mà MBH BMH 900  MBH 900  HAD 2      phụ với góc BCA từ suy AMN hay tứ giác MHDN nội tiếp ABC HAC ADH    MND MHD 900 Ví dụ Cho tam giác ABC có góc nhọn nội tiếp đường trịn (O) có trực tâm điểm H Gọi M điểm dây cung BC không chứa điểm A ( M khác B,C ) Gọi N,P theo thứ tự điểm đối xứng M qua đường thẳng AB,AC a) Chứng minh AHCP tứ giác nội tiếp b) N,H,P thẳng hàng c) Tìm vị trí điểm M để độ dài đoạn NP lớn Phân tích hướng dẫn giải: CHUYÊN ĐỀ HSG TOÁN A P I O H N B C K M a) Giả sử đường cao tam giác AK,CI Để chứng minh AHCP tứ giác nội tiếp ta        chứng minh AHC ( đối đỉnh), APC (  APC 1800 Mặt khác ta có AHC IHK AMC ABC tính đối xứng góc nội tiếp chắn cung) Như ta cần chứng minh   ABC  IHK 1800 điều hiển nhiên tứ giác BIHK tứ giác nội tiếp   b) Để chứng minh N,H,P thẳng hàng ta chứng minh NHA  AHP 1800 ta tìm cách quy hai góc góc đối tứ giác nội tiếp     Thật ta có: AHP (tính chất góc nội tiếp), ACP (1) (Tính chất đối xứng) Ta ACP ACM thấy vai trò tứ giác AHCP giống với AHBN nên ta dễ chứng minh AHBN tứ giác nội     tiếp từ suy AHN , mặt khác ABN (2) (Tính chất đối xứng) Từ (1), (2) ta suy ABN ABM   cần chứng minh ABM  ACM 1800 điều hiển nhiên tứ giác ABMC nội tiếp   Vậy NHA  AHP 1800 hay N,H,P thẳng hàng Chú ý: Đường thẳng qua N,H,P đường thẳng Steiners điểm M Thông qua tốn em học sinh cần nhớ tính chất Đường thẳng Steiners tam giác qua trực tâm tam giác (Xem thêm phần “Các định lý hình học tiếng’’)       c) Ta có MAN Mặt khác ta có AM AN AP nên 2BAM,MAP 2MAC  NAP 2BAC điểm M, N,P thuộc đường tròn tâm A bán kính AM Áp dụng định lý sin tam giác NAP ta   có: NP 2R.sin NAP Như NP lớn AM lớn Hay AM 2AM.sin 2BAC đường kính đường trịn (O) Ví dụ Cho tam giác ABC đường cao AH gọi M, N trung điểm AB, AC Đường tròn ngoại tiếp tam giác BHM cắt đường tròn ngoại tiếp tam giác CNH E Chứng minh AMEN tứ giác nội tiếp HE qua trung điểm MN Phân tích, định hướng cách giải: A Để chứng minh AMEN tứ giác nội tiếp ta N E Ta cần tìm liên hệ góc   với góc có sẵn MAN; MEN I M   chứng minh: MAN  MEN 1800 B K H | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN C TOÁN tứ giác nội tiếp khác Ta có             MEN 3600  MEH  NEH 360  1800  ABC  1800  ACB ABC  ACB suy 1800  BAC   MEN  MAN 1800 Hay tứ giác AMEN tứ giác nội tiếp Kẻ MK  BC , giả sử HE cắt MN I IH cát tuyến hai đường trịn (BMH) , (CNH) Lại có MB MH MA (Tính chất trung tuyến tam giác vng) Suy tam giác MBH cân M  KB KH  MK ln qua tâm đường trịn ngoại tiếp tam giác MBH Hay MN tiếp tuyến (MBH) suy IM IE.IH , tương tự ta có MN tiếp tuyến  HNC  suy IN2 IE.IH IM IN Xem thêm phần: ‘’Các tính chất cát tuyến tiếp tuyến’’ Ví dụ Cho tam giác cân ABC (AB AC) P điểm cạnh đáy BC Kẻ đường thẳng PE,PD song song với AB, AC  E  AC, D  AB  gọi Q điểm đối xứng với P qua DE Chứng minh bốn điểm Q,A, B,C thuộc đường tròn Phân tích định hướng giải: A Bài tốn có giả thiết cần lưu ý Đó đường thẳng song song D Q I với cạnh tam giác , điểm Q E đối xứng với P qua DE Do ta có: AD EP EC EQ H B C P DP DQ ( Đây chìa khóa để ta giải tốn này) Từ định hướng ta có lời giải sau: Do AD / /PE,PD / /AE  ADPE hình bình hành  AE DP DQ Mặt khác P,Q đối xứng qua DE  AD PE EQ Suy DAQE hình      thang cân  DAQ Kéo dài DE cắt CQ H ta có DAQ Như để chứng AQE AQE PEH   minh ABCQ nội tiếp ta cần chứng minh: PCH  PEH 1800  PEHC tứ giác nội tiếp Mặt khác     ta có: ECQ (do tam giác EQC cân), EPH (Do tính đối xứng ) suy EQC EQH   ECH EPH  EPCH tứ giác nội tiếp Ví dụ Cho tam giác ABC nội tiếp đường tròn  O  Dựng đường tròn qua B tiếp xúc với cạnh AC A dựng đường tròn qua C tiếp xúc với AB A hai đường tròn cắt D  Chứng minh ADO 900 Phân tích định hướng giải:  Ta thấy ADO 900 điểm A A, D,O nằm đường trịn N M đường kính OA Ta mong muốn tìm O D 6B C CHUYÊN ĐỀ HSG TỐN  góc ADO 90 Điều làm ta nghỉ đến tính chất quen thuộc ‘’Đường kính qua trung điểm dây cung vng góc với dây đó’’ Vì ta gọi M, N trung điểm   AB, AC ta có: OMA ONA 900 Do tứ giác OMAN nội tiếp Cơng việc lại ta   chứng minh AMDO ANOD DMAN tứ giác nội tiếp Mặt khác ta có: ABD CAD   (Tính chất góc tạo tiếp tuyến dây cung)  BDA ADC đồng dạng nên ta ACD BAD       suy DMA DNC  DMA  DNA DNC  DNA 1800  AMDN nội tiếp suy năm điểm  A,M, D,O, N nằm đường trịn đường kính OA  ADO 900 Ví dụ Cho tam giác ABC vuông cân A đường tròn  O  tiếp xúc với AB,AC B,C Trên  nằm tam giác ABC lấy điểm M  M B; C  Gọi I,H,K hình chiếu cung BC M BC; CA; AB P giao điểm MB với IK, Q giao điểm MC với IH Chứng minh PQ / /BC Phân tích định hướng giải: Để chứng minh PQ / /BC A   ta chứng minh MPQ MBC H tứ giác BIMK nội tiếp K   nên MBC Mặt khác MKI M Q P B C I AC tiếp tuyến (O) nên O   ta có: ACK CIMH MBC     nội tiếp nên ACK Như để chứng minh PQ / /BC ta cần chứng minh MIH Tức MPQ MIH      ta cần chứng minh tứ giác MPIQ nội tiếp Để ý BMC PIM  IMQ KMH 1350 , PIQ     MC  KBM  KCH  sđ BM 450 suy đpcm.(Các em học sinh tự hoàn thiện lời giải)     Tiêu chuẩn 2: Tứ giác ABCD nội tiếp ADB ACB A D O B C | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN TỐN Ví dụ Trên cạnh BC,CD hình vng ABCD ta lấy điểm M, N cho  MAN 450 Đường thẳng BD cắt đường thẳng AM, AN tương ứng điểm P,Q a) Chứng minh tứ giác ABMQ ADNP nội tiếp b) Chứng minh điểm M,N,Q,P,C nằm đường tròn Lời giải: a) Gọi E giao điểm AN BC B A P Các điểm M Q nằm hai cạnh M EB EA tam giác EBA , nên tứ giác Q ABMQ lồi Các đỉnh A B nhìn đoạn thẳng MQ góc 450 D C N Vì tứ giác ABMQ nội tiếp Lập luận tương tự ta suy tứ giác ADNP nội tiếp E     b) Từ kết câu a, suy ADP ANP 450 ,QAM QBM 450  NP  AM,MQ  AN Tập hợp điểm P,Q,C nhìn đoạn MN góc vng, nên điểm nằm đường trịn đường kính MN Ví dụ Cho điểm M thuộc cung nhỏ BC đường tròn  O  Một đường thẳng d ngồi  O  vng góc với OM ; CM, BM cắt d D,E Chứng minh B,C, D,E thuộc đường trịn Lời giải:   Kẻ đường kính AM cắt d N Ta có ANE ABE 900 nên tứ giác ABNE nội tiếp, suy   BEN BAN A   Mặt khác BAN , BCM     BCM hay BCD BEN BED Vậy B,C, D,E thuộc đường trịn O C B M N E D Ví dụ Cho tam giác ABC có đường cao AD, BE,CF đồng quy H Gọi K giao điểm CHUYÊN ĐỀ HSG TOÁN EF AH , M trung điểm AH Chứng minh K trực tâm tam giác MBC Lời giải: A Lấy điểm S đối xứng với H qua BC , R giao điểm KC với MB M E R Vì ME MA MH (Tính chất trung F H tuyến), kết hợp tính đối xứng điểm     S ta có MSB BHD MHE MEB K B C D   nên tứ giác MESB nội tiếp Suy RBE (1) MSE S       Lại có KSC nên tứ giác KSCE nội tiếp, MSE (2).Từ (1) CHD AHF AEK RCE     (2) suy RBE nên tứ giác RBCE nội tiếp Từ suy BRC RCE BEC 900 Trong tam giác MBC , ta có MK  BC CK  MB nên K trực tâm tam giác MBC Ví dụ Cho tam giác ABC nội tiếp đường tròn tâm O Đường tròn (O') tiếp xúc với cạnh AB, AC E,F tiếp xúc với (O) S Gọi I tâm đường tròn nội tiếp tam giác ABC Chứng minh BEIS,CFIS tứ giác nội tiếp Lời giải: Nhận xét: toán thực chất A định lý Lyness phát biểu theo cách khác;(Xem thêm phần: M N ‘’Các định lý hình học tiếng’’) I O'EF cân O,O' nên E F Kéo dài SE,SF cắt đường trịn (O) E,F Ta có tam giác OMS, O O' C B S x   O'ES=OMS  O'E / /OM  OM  AB hay M điểm cung AB Kẻ đường phân giác góc ACB cắt EF I , ta chứng minh I tâm đường tròn nội tiếp tam giác ABC  MCS    EFS    IFS   tứ giác Thật ta có: C,I,M thẳng hàng ICS IFS nên ICS MSx MSx  SCF  IFCS tứ giác nội tiếp  EIS Mặt khác tứ giác ACSB nội tiếp nên     ABS  ACS  ABS 1800  EIS 180 hay tứ giác EISB nội tiếp   ESI  Cơng việc cịn lại chứng minh: IB phân giác góc ABC Vì EBI mà     180  A 180  A C B  ISB   ESB     ESI AEF  MSB   MCB    Điều chứng tỏ IB phân giác 2 2  góc ABC Hay I tâm vòng tròn nội tiếp tam giác ABC | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN TOÁN Chú ý: Nếu thay giả thiết điểm I tâm vòng tròn nội tiếp tam giác thành Các đường tròn ngoại tiếp tam giác FCS, SBS cắt I hình thức tốn khác chất định lý Lyness Để ý rằng: AEF cân A nên ta dễ dàng suy được: I trung điểm EF Ví dụ Cho hai đường trịn (O1 ),(O ) tiếp xúc với Kẻ đường thẳng O1O2 cắt hai đường tròn (O1 ),(O ) A, B,C ( B tiếp điểm ) Đường thẳng  tiếp tuyến chung hai đường tròn với tiếp điểm tương ứng D1 , D2 Đường thẳng (  ') tiếp tuyến với (O ) qua C Đường thẳng BD1 cắt (  ') E AD1 cắt ED2 M , AD2 cắt BD1 H Chứng minh AE  MH Phân tích định hướng giải: M + Vì ED1  MA góc AD1 B N góc nội tiếp chắn đường Δ D1 trịn Vì để chứng minh AE  MH ta phải chứng minh AD2  ME , tức I D2 Δ' H A O1 ta chứng minh H trực tâm tam B O2 C  E AD  giác MAE Khi ta có: AD 2E hay tứ giác AD1 D2 E tứ giác nội tiếp E + Gọi N giao điểm CD2 AM Xét tiếp tuyến chung (O1 ) (O ) qua B cắt ( ) I Khi ta có: ID1 IB ID2  BD1 D2 vuông B , D1E / /CN (cùng vng góc với BD2 ) Do     BAD BD1 D (Góc tạo tia tiếp tuyến dây cung), mặt khác BD1 D D1 D N (so le trong)   Suy CAD ND D1  AD1 D C tứ giác nội tiếp (1) Xét tứ     IBD giác ED1 D2 C ta có: ED1 / /CD2 , BEC ( góc đồng vị) Suy ED1 D D1EC suy tứ giác ED1 D2 C hình thang cân nên nội tiếp (2) Từ (1), (2) ta suy điểm A, D1 , D ,C,E thuộc đường tròn Suy tứ giác AD1D2 E nội tiếp Ví dụ Cho tam giác ABC có hai đường cao BD,CE cắt H gọi I trung điểm BC Hai đường tròn ngoại tiếp tam giác BEI CDI cắt K , DE cắt BC M Chứng minh tứ giác BKDM nội tiếp A Phân tích định hướng giải: Ta thấy đường tròn ngoại tiếp tam giác ADE, BEI,CDI cắt điểm K (Định lý Miquel) Như ta thấy AEKD tứ giác nội tiếp, mặt khác từ giả thiết ta có: AEHD tứ D giác nội tiếp Nên suy điểm A,E,H,K, D thuộc đường trịn đường kính AH Đây chìa khóa để giải toán E K H M B I 10 C

Ngày đăng: 18/10/2023, 23:48

w