Nghiên cứu xử lý tồn dư trong nước của một số chất kháng sinh phổ biến trong nuôi trồng thủy sản bằng vật liệu carbon trên cơ sở khung cơ kim fe mil 53

208 1 0
Nghiên cứu xử lý tồn dư trong nước của một số chất kháng sinh phổ biến trong nuôi trồng thủy sản bằng vật liệu carbon trên cơ sở khung cơ kim fe mil 53

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ỦY BAN NHÂN DÂN THÀNH ĐỒN TP HỒ CHÍ MINH THÀNH PHỐ HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN SỞ KHOA HỌC VÀ CÔNG NGHỆ KHOA HỌC VÀ CÔNG NGHỆ TRẺ CHƯƠNG TRÌNH KHOA HỌC VÀ CƠNG NGHỆ CẤP THÀNH PHỐ BÁO CÁO TỔNG HỢP KẾT QUẢ NHIỆM VỤ NGHIÊN CỨU KHOA HỌC VÀ CÔNG NGHỆ Số hợp đồng : 06/2018/HĐ-KHCN-VƯ TÊN ĐỀ TÀI: NGHIÊN CỨU XỬ LÝ TỒN DƯ TRONG NƯỚC CỦA MỘT SỐ CHẤT KHÁNG SINH PHỔ BIẾN TRONG NUÔI TRỒNG THỦY SẢN BẰNG VẬT LIỆU CARBON TRÊN CƠ SỞ KHUNG CƠ KIM (Fe-MIL-53) Cơ quan chủ trì nhiệm vụ: Trung tâm Phát triển Khoa học Công nghệ Trẻ Chủ nhiệm nhiệm vụ: ThS Trần Văn Thuận TP HỒ CHÍ MINH, THÁNG NĂM 2019 Thành phố Hồ Chí Minh - 20… ỦY BAN NHÂN DÂN THÀNH ĐỒN TP HỒ CHÍ MINH THÀNH PHỐ HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN SỞ KHOA HỌC VÀ CÔNG NGHỆ KHOA HỌC VÀ CƠNG NGHỆ TRẺ CHƯƠNG TRÌNH KHOA HỌC VÀ CÔNG NGHỆ CẤP THÀNH PHỐ BÁO CÁO TỔNG HỢP KẾT QUẢ NHIỆM VỤ NGHIÊN CỨU KHOA HỌC VÀ CÔNG NGHỆ TÊN ĐỀ TÀI: NGHIÊN CỨU XỬ LÝ TỒN DƯ TRONG NƯỚC CỦA MỘT SỐ CHẤT KHÁNG SINH PHỔ BIẾN TRONG NUÔI TRỒNG THỦY SẢN BẰNG VẬT LIỆU CARBON TRÊN CƠ SỞ KHUNG CƠ KIM (Fe-MIL-53) (Đã chỉnh sửa theo kết luận Hội đồng nghiệm thu ngày 07 tháng 05 năm 2019) Chủ nhiệm nhiệm vụ: (ký tên) Chủ tịch Hội đồng nghiệm thu (Ký ghi rõ họ tên) Trần Văn Thuận Cơ quan chủ trì nhiệm vụ Đồn Kim Thành Thành phố Hồ Chí Minh- 20… THÀNH ĐỒN TP HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN KHOA HỌC VÀ CƠNG NGHỆ TRẺ CỘNG HỒ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự - Hạnh phúc TP Hồ Chí Minh, ngày tháng năm 2019 BÁO CÁO THỐNG KÊ KẾT QUẢ THỰC HIỆN NHIỆM VỤ NGHIÊN CỨU KH&CN I THÔNG TIN CHUNG Tên nhiệm vụ: Thuộc: Chương trình/lĩnh vực (tên chương trình/lĩnh vực): Vườn ươm Sáng tạo Khoa học Công nghệ trẻ Chủ nhiệm nhiệm vụ: Họ tên: Trần Văn Thuận Ngày sinh: 20/12/1990 Giới tính: Nam Học hàm, Học vị: Thạc sỹ Chun ngành: Cơng nghệ hóa học Năm đạt học vị: 2015 Chức danh khoa học: Năm phong chức danh: Tên quan công tác: Trường Đại học Nguyễn Tất Thành Chức vụ: Chuyên viên nghiên cứu Địa quan: 300A Nguyễn Tất Thành, Phường 13, Quận 4, TP Hồ Chí Minh Điện thoại quan: 028 39 411 211 Fax: 028 39 404 759 Địa nhà riêng: 366/33/6 Tân Thới Hiệp 21, Phường Tân Thới Hiệp, Quận 12, TP Hồ Chí Minh Số tài khoản: 0071.000.981.120 ngân hàng Vietcombank TP HCM Mã số thuế: 8098582469 Điện thoại di động: (+84) 0989 267 354 E-mail: tvthuan@ntt.edu.vn Tổ chức chủ trì nhiệm vụ: Tên tổ chức chủ trì nhiệm vụ: Trung tâm Phát triển Khoa học Công nghệ trẻ Điện thoại: 028.38.233.363 Fax: 028 39 404 759 Website: http://www.khoahoctre.com.vn/ Địa chỉ: Số Phạm Ngọc thạch, Phường Bến Nghé, Quận Họ tên thủ trưởng tổ chức: Ơng Đồn Kim Thành Chức vụ: Giám đốc Số tài khoản: 3713.0.1083277.00000 Kho bạc Nhà nước Quận TP Hồ Chí Minh II TÌNH HÌNH THỰC HIỆN Thời gian thực nhiệm vụ: - Theo Hợp đồng ký kết: từ tháng năm 2018 đến tháng năm 2019 - Thực tế thực hiện: từ tháng năm 2018 đến tháng năm 2019 - Được gia hạn (nếu có): - Lần từ tháng… năm… đến tháng… năm… - Lần … Kinh phí sử dụng kinh phí: a) Tổng số kinh phí thực hiện: 90 tr.đ, đó: + Kính phí hỗ trợ từ ngân sách khoa học: 90 tr.đ + Kinh phí từ nguồn khác: tr.đ b) Tình hình cấp sử dụng kinh phí từ nguồn ngân sách khoa học: Số TT Theo kế hoạch Thời gian Kinh phí (Tháng, năm) (Tr.đ) Thực tế đạt Thời gian Kinh phí (Tháng, năm) (Tr.đ) Ghi (Số đề nghị toán) c) Kết sử dụng kinh phí theo khoản chi: Đối với đề tài: Đơn vị tính: đồng Số TT Nội dung khoản chi Trả công lao động (khoa học, phổ thông) Nguyên, vật liệu, lượng Thiết bị, máy móc Xây dựng, sửa chữa nhỏ Chi trả dịch vụ thuê Hội thảo Chi khác (In ấn) Tổng cộng Theo kế hoạch Tổng NSKH 48.848.800 Thực tế đạt Tổng NSKH 48.848.800 Nguồn khác 48.848.800 48.848.800 Nguồn khác 18.546.000 18.546.000 18.546.000 18.546.000 12.000.000 12.000.000 12.000.000 12.000.000 9.000.000 1.605.200 90.000.000 9.000.000 1.605.200 90.000.000 0 9.000.000 1.605.200 90.000.000 9.000.000 1.605.200 90.000.000 0 - Lý thay đổi (nếu có): Đối với dự án: Đơn vị tính: Triệu đồng Số TT Nội dung khoản chi Theo kế hoạch Tổng NSKH Nguồn khác Thực tế đạt Tổng NSKH Nguồn khác Thiết bị, máy móc mua Nhà xưởng xây dựng mới, cải tạo Kinh phí hỗ trợ cơng nghệ Chi phí lao động Ngun vật liệu, lượng Thuê thiết bị, nhà xưởng Khác Tổng cộng - Lý thay đổi (nếu có): Các văn hành q trình thực đề tài/dự án: (Liệt kê định, văn quan quản lý từ công đoạn xét duyệt, phê duyệt kinh phí, hợp đồng, điều chỉnh (thời gian, nội dung, kinh phí thực có); văn tổ chức chủ trì nhiệm vụ (đơn, kiến nghị điều chỉnh có) Số TT … Số, thời gian ban hành văn Tên văn Ghi Tổ chức phối hợp thực nhiệm vụ: Số TT Tên tổ chức đăng ký theo Thuyết minh Tên tổ chức tham gia thực Viện Y tế Công cộng, Bộ Y tế Đại học Bách Khoa TP.HCM Viện Hóa học Viện HLKH&CN Việt Nam Đại học Tài Nguyên Môi Trường, TP.HCM Đại học Đồng Nai, Tỉnh Đồng Nai Nội dung tham gia chủ yếu Hợp tác công bố khoa học Hợp tác công bố khoa học Hợp tác công bố khoa học Sản phẩm chủ yếu đạt Bài báo SCIE Bài báo SCIE Bài báo SCIE Hợp tác công bố khoa học Bài báo SCIE Hợp tác công bố khoa học Bài báo SCIE Ghi chú* - Lý thay đổi (nếu có): Cá nhân tham gia thực nhiệm vụ: (Người tham gia thực đề tài thuộc tổ chức chủ trì quan phối hợp, khơng 10 người kể chủ nhiệm) Số TT Tên cá nhân đăng ký theo Thuyết minh Trần Văn Thuận Tên cá nhân tham gia thực Trần Văn Thuận Chủ nhiệm đề tài Bạch Long Giang Nguyễn Duy Trinh Nguyễn Hữu Vinh Nguyễn Thị Thương Bạch Long Giang Thành viên Nguyễn Duy Trinh Thành viên Nguyễn Hữu Vinh Thành viên Nguyễn Thị Thương Thành viên Nội dung tham gia Sản phẩm chủ yếu đạt Ghi chú* - Lý thay đổi ( có): Tình hình hợp tác quốc tế: Số TT Theo kế hoạch (Nội dung, thời gian, kinh phí, địa điểm, tên tổ chức hợp tác, số đoàn, số lượng người tham gia ) Thực tế đạt (Nội dung, thời gian, kinh phí, địa điểm, tên tổ chức hợp tác, số đồn, số lượng người tham gia ) GS Seong Soo Hong (Đại học Quốc gia Pukyong, Hàn Quốc) GS Kwon Taek Lim ((Đại học Quốc gia Pukyong, Hàn Quốc) TS Võ Nguyễn Đại Việt (Đại học Pahang, Malyasia) Ghi chú* Hợp tác thực báo Hợp tác thực báo Hợp tác thực báo - Lý thay đổi (nếu có): Tình hình tổ chức hội thảo, hội nghị: Theo kế hoạch Thực tế đạt Số (Nội dung, thời gian, kinh phí, địa (Nội dung, thời gian, kinh TT điểm ) phí, địa điểm ) Hội thảo “Ứng dụng vật liệu Hội thảo tổ chức vào khung kim xử lý ô nhiễm 19 tháng năm 2019 chất kháng sinh” trường Đại học Nguyễn Tất Thành với kinh phí triệu đồng Ghi chú* - Lý thay đổi (nếu có): Tóm tắt nội dung, cơng việc chủ yếu: (Nêu mục 15 thuyết minh, không bao gồm: Hội thảo khoa học, điều tra khảo sát nước nước ngoài) Số TT Các nội dung, công việc chủ yếu (Các mốc đánh giá chủ yếu) Thời gian (Bắt đầu, kết thúc - tháng … năm) Theo kế Thực tế đạt hoạch Người, quan thực Xây dựng thuyết minh chi tiết Trần Văn Thuận; Bạch Long Giang Tháng 6/2018 Trần Văn đến tháng Thuận; Bạch 8/2018 Long Giang Tháng 8/2018 Trần Văn đến tháng Thuận; 10/2018 Nguyễn Duy Trinh Tháng Tháng 10/2018 Trần Văn 10/2018 đến đến tháng Thuận; tháng 12/2018 Nguyễn Duy 12/2018 Trinh Tháng 1/2019 Tháng 1/2019 Trần Văn đến tháng đến tháng Thuận; 3/2019 3/2019 Nguyễn Hữu Vinh; Nguyễn Thị Thương Tháng 3/2019 Tháng 3/2019 Trần Văn đến tháng đến tháng Thuận; 4/2019 4/2019 Nguyễn Hữu Vinh; Nguyễn Thị Thương Tháng 1/2019 Tháng 1/2019 Trần Văn đến tháng đến tháng Thuận 4/2019 4/2019 Tháng 1/2018 đến tháng 3/2018 Nghiên cứu quy trình tổng hợp vật Tháng 6/2018 liệu carbon sở MIL-53(Fe) đến tháng phương pháp nung nhiệt 8/2018 Đặc trưng cấu trúc vật liệu Tháng 8/2018 carbon đến tháng 10/2018 Tối ưu hóa điều kiện hấp phụ số chất kháng sinh phương pháp đáp ứng bề mặt (RSM) Khảo sát động học, đẳng nhiệt, nhiệt động học, khả giải hấp, độ bền trình hấp phụ chất kháng sinh vật liệu carbon Báo cáo tổng kết đề tài Viết 02 báo khoa học đăng kí thuyết minh đề tài Tháng 1/2018 - Lý thay đổi (nếu có): III SẢN PHẨM KH&CN CỦA NHIỆM VỤ Sản phẩm KH&CN tạo ra: a) Sản phẩm Dạng I: Số TT Tên sản phẩm tiêu chất lượng chủ yếu Vật liệu carbon Đơn vị đo gam Số lượng 1.0 Theo kế hoạch Thực tế đạt Đáp ứng tiêu xử lý Đạt theo kế số kháng sinh nước ≥ hoạch 90% diện tích bề mặt riêng theo BET 100 m2/g - Lý thay đổi (nếu có): b) Sản phẩm Dạng II: Số TT Yêu cầu khoa học cần đạt Theo kế hoạch Thực tế đạt Quy trình tổng hợp Quy trình ổn định phù hợp Đạt theo kế vật liệu carbon hoạch với điều kiện Việt Nam Tên sản phẩm Ghi Đạt theo kế hoạch Bảng tối ưu hóa điều kiện hấp phụ xử lý số kháng sinh (Sulfadiazine, Ciprofloxacin…) nước Vượt qua tiêu chuẩn kiểm định chương trình Design-Expert 12: P-value, Lack-of-fit, AP R2 mơ hình với mức độ tin cậy 95% Quy trình đánh giá khả hấp phụ: động học, nhiệt độ học, đẳng nhiệt hấp phụ khả tái sử dụng Dung lượng hấp phụ cực đại Đạt theo kế hoạch vật liệu đạt 50 mg/g, khả tái sử dụng vật liệu lần - Lý thay đổi (nếu có): c) Sản phẩm Dạng III: Số TT Tên sản phẩm Bài báo thuộc danh mục tính điểm Hội Đồng Chức Danh Giáo Sư Nhà Nước Bài báo tạp chí thuộc danh mục ISI/Scopus Yêu cầu khoa học cần đạt Theo Thực tế kế hoạch đạt 01 01 04 Số lượng, nơi cơng bố (Tạp chí, nhà xuất bản) Tạp chí quốc tế SCIE Danh mục báo đăng: Thuan Van Tran, Duyen Thi Cam Nguyen, Hanh TN Le, Long Giang Bach, Dai-Viet N Vo, Seong Soo Hong, Tri-Quang T Phan, Trinh Duy Nguyen, Tunable Synthesis of Mesoporous Carbons from Fe3O (BDC)3 for Chloramphenicol Antibiotic Remediation, Nanomaterials, 2019, 9(2), 237 Ngày công bố: 10/2/2019 (Tạp chí SCIE, Hệ số ảnh hưởng 3.5, Danh mục Q1 theo SCImago) DOI: 10.3390/nano9020237 Nhà xuất bản: Multidisciplinary Digital Publishing Institute (Switzerland) Thuan Van Tran, Duyen Thi Cam Nguyen, Hanh TN Le, Long Giang Bach, Dai-Viet N Vo, Kwon Taek Lim, Linh Xuan Nong, Trinh Duy Nguyen, Combined Minimum-Run Resolution IV and Central Composite Design for Optimized Removal of the Tetracycline Drug Over Metal–Organic Framework-Templated Porous Carbon, Molecules, 2019, 24(10), 1887 Ngày cơng bố: 16/5/2019 (Tạp chí SCIE, Hệ số ảnh hưởng 3.0, Danh mục Q1 theo SCImago) DOI: 10.3390/molecules24101887 Nhà xuất bản: Multidisciplinary Digital Publishing Institute (Switzerland) Thuan Van Tran, Duyen Thi Cam Nguyen, Hanh TN Le, Oanh TK Nguyen, Vinh Huu Nguyen, Thuong Thi Nguyen, Long Giang Bach, Trinh Duy Nguyen, A hollow mesoporous carbon from metal-organic framework for robust adsorbability of ibuprofen drug in water, Royal Society Open Science, 2019, 6, 190058 Ngày công bố: 22/5/2019 (Tạp chí SCIE, Hệ số ảnh hưởng 2.5, Danh mục Q1 theo SCImago, Rank: 7/120) DOI: 10.1098/rsos.190058 Nhà xuất bản: The Royal Society (United Kingdom) Duyen Thi Cam Nguyen, Hanh Thi Ngoc Le, Trung Sy Do, Van Thinh Pham, Lam Dai Tran, Van Thi Thanh Ho, Thuan Van Tran, Duy Chinh Nguyen, Trinh Duy Nguyen, Long Giang Bach, Huynh Ky Phuong Ha, Van Thuan Doan, Metal-Organic Framework MIL-53 (Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization, Journal of Chemistry, 2019, 2019, Article ID 5602957, 11 pages Ngày công bố: 3/3/2019 (Tạp chí SCIE, Hệ số ảnh hưởng 1.7, Danh mục Q2 theo SCImago) DOI: 10.1155/2019/5602957 Nhà xuất bản: Hindawi Publishing Corporation (Egypt) - Lý thay đổi (nếu có): d) Kết đào tạo: Số TT Cấp đào tạo, Chuyên ngành đào tạo Thạc sỹ Tiến sỹ Số lượng Theo kế hoạch Thực tế đạt Ghi (Thời gian kết thúc) - Lý thay đổi (nếu có): đ) Tình hình đăng ký bảo hộ quyền sở hữu công nghiệp: Số TT Tên sản phẩm đăng ký Kết Theo kế hoạch Thực tế đạt Ghi (Thời gian kết thúc) - Lý thay đổi (nếu có): e) Thống kê danh mục sản phẩm KHCN ứng dụng vào thực tế Số TT Tên kết ứng dụng Thời gian Địa điểm (Ghi rõ tên, địa nơi ứng dụng) Kết sơ 2 Đánh giá hiệu nhiệm vụ mang lại: a) Hiệu khoa học công nghệ: (Nêu rõ danh mục công nghệ mức độ nắm vững, làm chủ, so sánh với trình độ cơng nghệ so với khu vực giới…) Trong nghiên cứu này, nhóm nghiên cứu sử dụng điều kiện tổng hợp Fe-MIL-53 phương pháp dung môi diễn điều kiện mềm với nhiệt độ thấp, thời gian ngắn mở rộng carbon hóa nhiệt độ thấp nhiệt độ mà cơng trình báo cáo trước đây, nhằm đưa quy mô tổng hợp carbon với số lượng lớn đảm bảo khả hấp phụ cao Chúng tơi sử dụng phương pháp tối ưu hóa nhằm tiết kiệm cơng sức lao động tìm thấy điểm tốt để tiến hành thí nghiệm đạt kết cao b) Hiệu kinh tế xã hội: (Nêu rõ hiệu làm lợi tính tiền dự kiến nhiệm vụ tạo so với sản phẩm loại thị trường…) Vật liệu carbon có khả mở ứng dụng lĩnh vực thủy hải sản mà lĩnh vực cịn mẻ chưa có nhiều cơng trình nghiên cứu Qua góp phần to lớn nhiều lĩnh vực khoa học công nghệ đời sống, đặc biệt khả ứng dụng công nghệ xử lý mơi trường, mà tình trạng nhiễm môi trương ngày trở nên nghiêm trọng không Việt Nam mà toàn giới Sự thành cơng đề tài góp phần cải thiện mơn trường giảm thiểu ô nhiễm môi trường nước chất kháng sinh, cụ thể giảm tồn dư chất kháng sinh sản phẩm thủy sản đông lạnh Tình hình thực chế độ báo cáo, kiểm tra nhiệm vụ: Số TT I II III Nội dung Báo cáo tiến độ Thời gian thực Tháng 1/2019 Ghi (Tóm tắt kết quả, kết luận chính, người chủ trì…) Đã hồn thành 90% khối lượng công việc đề tài Lần … Báo cáo giám định Lần … Nghiệm thu sở …… Chủ nhiệm đề tài (Họ tên, chữ ký) Trần Văn Thuận Thủ trưởng tổ chức chủ trì (Họ tên, chữ ký đóng dấu) royalsocietypublishing.org/journal/rsos Fe FeCl3·6H2O N2 DMF + 800°C, h 180°C, h MIL-53 (Fe) hollow mesoporous carbon Scheme Schematic illustration for the synthesis of the MIL-53 (Fe) and MPC Experimental procedure 2.1 Chemicals and instruments Chemicals and instruments for the synthesis and characterization of MIL-53 (Fe) and MPC materials were described in electronic supplementary material In addition, adsorption kinetic, isotherm equations and mathematical formula were addressed 2.2 Preparation of MIL-53 (Fe) and MPC materials The MIL-53 (Fe) precursor could be facilely synthesized by the solvothermal strategy Firstly, 1.35 g of FeCl3.6H2O and 0.83 g of terephthalic acid were dissolved in 25 ml N,N-dimethylformamide (DMF) The mixture was then transferred into a Teflon-lined autoclave and heated up at 1808C for h The solid was extracted, washed with C2H5OH three times (3  10 ml) and dried at 1108C The MPC was fabricated using a pyrolysis system [35] Firstly, MIL-53 (Fe) precursor was carefully loaded on a heat-resistant vessel connected with a tube furnace and pyrolysed at 8008C for h under N2 (100 cm3 min21) The sample was cooled overnight and stored in a desiccator cabinet Scheme gives an overall picture of the preparation process of MIL-53 (Fe) and hollow MPC 2.3 Experimental batches Herein, the MPC (0.1 g l21) was mixed with 50 ml of ibuprofen solutions (10 mg l21), which were diluted from a stock solution (20 mg l21) The test tubes were sealed and placed in the shaking tables (200 r.p.m.) After the regular time intervals (30, 60, 120, 240 and 360 min), sample concentrations were analysed using UV–vis spectroscopy at 222 nm Regarding adsorption isotherms, the similar procedure was employed at various ibuprofen concentrations (5, 10, 15 and 20 mg l21) at the equilibrium of 240 The percentage of removal H (%) and adsorption capacity q (mg g21) were calculated by the following equations: Co  Ce :100, Co Co  Ct :V qt ¼ m Co  Ce : V, qe ¼ m H(%) ¼ and ð2:1Þ ð2:2Þ ð2:3Þ R Soc open sci 6: 190058 nZVI imprinted in the porous carbon matrix from Fe(BTC) (BTC ¼ benzene-1,3,5-tricarboxylic acid) pyrolysis with the amazing Fe loadings (up to 77%) essential for Fischer –Tropsch reactions As inspired, we widened the applications of MOFs in various fields [31,33,34] Herein, MPC nanostructure was directly transformed from Fe-based MOFs precursor named MIL-53 (Fe) using the pyrolysis technique, which occurred at 8008C under a nitrogen atmosphere The material was then characterized using several measurements and analysis techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) The adsorption experiments of ibuprofen pharmaceutical were conducted to have insight into the effects of concentration, contact time, dosage, pH solution and recyclability To our best knowledge, this is the first time that the magnetically and hierarchically MPC from MOF MIL-53 (Fe) was adopted for the treatment of ibuprofen drug (a) (b) transmittance (arb units) intensity (arb units) MIL-53 (Fe) MIL-56 (Fe) (331) (110) MPC (graphene) * O–H Fe–O C=O –COO– MPC O–H C=O 20 40 2q (°) 30 50 60 70 4000 (c) 3200 2400 1600 wavenumber (cm–1) 800 (d) C–C intensity (arb units) MIL-53 (Fe) C–H pHpzc = 4.2 O–C–O C–C D-band 1320 MIL-53 (Fe) D pH C–H G-band 1590 6.4 MPC pHpzc = 6.4 –2 500 1500 1000 Raman shift 2000 MPC (cm–1) 10 12 pHO Figure (a) The XRD, (b) FTIR, (c) Raman and (d ) pHpzc profiles of MIL-53 (Fe) and MPC materials where Co, Ct and Ce are initial, time t (min) and equilibrium concentrations (mg l21), respectively; m (g) and V (ml) are the amount of adsorbent and volume of solution, respectively 2.4 Determination of pHpzc ( pH point of zero charges) The steps of pHpzc determination were carried out similarly to a recent report [36] Firstly, the solutions of potassium chloride (KCl) 0.1 M were prepared, and then adjusted with ‘initial pH’ points (2, 4, 6, 8, 10, 12) An amount of 5.0 mg materials was added into each 25 ml of KCl solution The mixtures were shaken slightly for 10 min, and maintained stably within 24 h To identify the ‘final pH’, the solids were extracted from the solution using a simple magnet A graph of ‘initial pH’ against ‘final pH’ was plotted to visualize the pHpzc Results and discussion 3.1 Textual characterization Herein, figure 1a compares the X-ray diffraction profiles of MIL-53 (Fe) precursor and MPC materials The powder XRD patterns (main peaks at around 9.48, 198 and 288) of the synthesized MIL-53 (Fe) sample were in line with a previous report, indicating that MIL-53 (Fe) was successfully fabricated [37] Meanwhile, the crystalline profile for MPC provided clear evidence of the existence of both nZVI portions (JCPDS 87 –0721) at around 44.58 (110), 65.08 (220) and an infinitesimal amount of iron oxides crystalline phases at around 35.48 (331) Additionally, the presence of graphitic carbon can be confirmed by broad diffraction from 208 to 308 [36] The formation of graphitic carbon may be due to R Soc open sci 6: 190058 10 royalsocietypublishing.org/journal/rsos (110) (220) Table Surface groups (mmol g21) obtained from Boehm titrations and textual properties of MIL-53 (Fe) and MPC materials MIL-53 (Fe) carboxylic groups (mmol g21) 21 MPC 1.05 lactonic groups (mmol g ) 0.5 21 phenolic groups (mmol g ) total oxygenated groups (mmol g21) 0 0.65 2.2 total basic groups (mmol g21) SBET (m2 g21) 7.6 0.85 199.0 magnetization saturation (emu g21) 6.3 R Soc open sci 6: 190058 the direct carbonization of MIL-53 (Fe) at 8008C, converting the carboxylate linkers (H2BDC) into graphitic carbon The presence of this reductive carbon may stimulate in situ chemical reduction (ISCR) to transform Fe (III) species to nZVI nanoparticles [24] The surface chemistry involving functional groups, which are essential for adsorption, can be analysed using the Fourier transform infrared (FTIR) spectra [38] According to recorded profiles in figure 1b, the common functional groups of both MIL-53 (Fe) and MPC were both detected at around 3340 cm – (O –H groups), 1594 cm – (C ¼ O groups) and 870 cm21 (aromatic C– H) [35] Moreover, table also reveals the number of functional groups including total oxygenated (2.2 mmol g21) and basic (0.85 mmol g21) groups for MPC via Boehm titration Importantly, the absence of respective vibrations at around 733 and 550 cm21 (Fe –O) [39,40] on the MPC demonstrated that the cracking of Fe–O coordination bonds on the MIL-53 (Fe) occurred successfully This observation is totally commensurate with several recent reports, in which the formation of nZVI was attributable to the reduction in Fe(III) on Fe-based MOFs by graphitic carbon under high temperature [32,41– 43] Raman spectra of MIL-53 (Fe) and MPC are revealed in figure 1c As observed from figure 1c, the appearance of the shifts at around 1456 and 1613 cm – is characterized by COO – and aromatic C¼C groups, respectively [44] Meanwhile, in the MPC structure emerged the typical D- (1320 cm21) and G- (1590 cm21) bands, indicating the defective structural phase, disorder of MPC [26] Meanwhile, figure 1d discloses the diagnostic plots of pHpzc—one of the very crucial parameters in adsorption, which determine the nature of the surface of a dispersed solid phase at a solid –electrolyte solution interface [45,46] Herein, the pHpzc values of MIL-53 (Fe) and MPC were 4.2 and 6.4, respectively To gain insight into the surface chemical compositions and chemical states, X-ray photoelectron spectroscopy (XPS) analysis was performed Initially, the XPS survey spectra display that both MIL-53 (Fe) and MPC surfaces are constituted by C, O and Fe elements as shown in figure 2a According to figure 2b, the typical photoelectron peaks at around 710.6 and 723.9 eV represent the respective sublevels of Fe 2p3/2 and Fe 2p1/2 for both materials However, a considerable increase (approx 30%) in Fe2ỵ/Fe3ỵ ratio in MPC compared with MIL-53 (Fe) (electronic supplementary material, table S2) implies that Fe3ỵ in MIL-53 (Fe) can be reduced to lower oxidation states during the pyrolysis of MIL-53 (Fe) Therefore, coexistence of Fe2ỵ and Fe3ỵ species in a mixture on the nZVI surface is highly possible, regarding binding energies of 708.7, 709.7, 710.5, 711.2, 712.0 and 713.2 eV (see electronic supplementary material, table S2) [47–49] As addressed from XRD and FTIR spectra, proofs of the existence of nZVI embedded in carbon were explored However, typical XPS signals for nZVI at 706 eV were not observed herein because X-ray photoelectron sensibility merely explores a limited depth (less than 10 nm), suggesting that the reduction in Fe3ỵ species in MIL-53 (Fe) incompletely occurred and these iron oxides may encapsulate the surface of core-shaped nZVI nanoparticles [26,48,50] Moreover, the O 1s XPS spectra in figure 2c and quantity results obtained from electronic supplementary material, table S2 reveal the dramatic change in the amount of carbonyl groups from 85.4% in MIL-53 (Fe) to 23.1% in MPC This evidence again demonstrates the strong deconstruction of carboxylate ligands under high temperature to form various kinds of oxygenated groups such as chemisorbed O/O–C¼O, C–O, C¼O and iron oxides Fe–O, corresponding to binding energies 535.2, 533.5, 532.8 and 530.2 eV, respectively [51] Meanwhile, the C 1s XPS profile in figure 2d indicates the presence of p– p interaction/O –C¼O 289.5 (eV), C –O (286.1 eV), C¼O (288.3 eV) and C –C/C¼C (284.4 eV) [51] Remarkably, the ratio of totally non-oxygenated C to oxidized C decreased from 54.8% (MIL-53 (Fe)) to 46.1% (MPC) (electronic supplementary material, table S2) This observation can be explained due to the participation of non-oxygenated C as reductive agent in ISCR process [24] royalsocietypublishing.org/journal/rsos no (b) (a) Fe 2p 14.0 eV Fe 2p3/2 Fe 2p1/2 Fe3+ surface peak O 1s intensity (arb units) intensity (arb units) shake-up peak C 1s Fe 2P MIL-53 (Fe) Fe 2p1/2 13.8 eV Fe 2p3/2 Fe 2p Fe3+ surface peak MPC 1200 1000 (c) 800 600 400 MIL-53 (Fe) 200 O 1s C=O 730 735 (d ) MIL-53 (Fe) C–O O–C=O O 1s C=O iron oxides intensity (arb units) intensity (arb units) O–H 720 715 C–C/C=C C=O Fe–O MPC 725 710 705 C 1s C=O O–C=O MPC C–C/C=C C 1s C–O C=O O–C=O 538 536 532 530 534 binding energy (eV) 528 294 291 288 285 binding energy (eV) 282 Figure The XPS spectra of MIL-53 (Fe) and MPC: (a) survey, (b) Fe 2p, (c) O 1s and (d ) C 1s The morphological properties by SEM technique were recorded to characterize the structure of the synthesized MPC material and its precursor MIL-53 (Fe) Figure 3a –c displays the polyhedron wellshaped crystalline structure and a uniformly smooth surface of MIL-53 (Fe), in tune with the scrutiny of a recent report in MIL-53 (Fe) [37] Meanwhile, figure 3d–f discloses the relatively amorphous and defective structure of MPC The structural observation is consolidated by TEM analysis in figure 3g,h TEM image in figure 3g shows a consistent structure of MIL-53 (Fe), while intrinsic structure of MPC exposed distinguishable dark spots (Fe nanoparticles inside) covered by opaque regions (graphitized carbon outside) (figure 3h) Because Fe clusters in MIL-53 (Fe) account for construction of crystals through SBUs; therefore, iron distribution in SBUs is entirely homogeneous (figure 3g) However, the collapse of MIL-53 (Fe) structure under high temperature can lead to the rearrangement of iron components The dispersion of nZVI nanoparticles in carbon again proved that Fe (III) species in SBUs were in situ reduced to nZVI via ISCR during pyrolysis of MIL-53 (Fe), then followed by aggregation of Fe nanoparticles under the magnetic effect [31,32,41] Interestingly, nZVI nanoparticles still exhibit the core– shell structure with 10– 20 nm in diameter Combined with SEM and TEM analysis techniques, nZVI nanoparticles were successfully embedded in the carbonaceous structure R Soc open sci 6: 190058 Fe2+ shake-up peak royalsocietypublishing.org/journal/rsos MIL-53 (Fe) MPC (a) (d ) mm mm (f) (e) mm 100 nm (g) (h) 500 nm 50 nm Figure (a – f ) The SEM and (g,h) TEM images of MIL-53 (Fe) (a – c,g) and MPC (d– f,h) materials Electronic supplementary material, figure S2 shows the nitrogen adsorption/desorption isotherm and pore distribution curves of MIL-53 (Fe) and MPC Electronic supplementary material, figure S2a,b demonstrates the dominant presence of mesopores by hysteresis loops obtained from isotherm plots of MIL-53 (Fe) and MPC Meanwhile, table indicates that the BET surface area and pore volume of MIL-53 (Fe) were 7.6 m2 g21 and 0.0118 cm3 g – 1, respectively, while these values for MPC were 199.0 m2 g21 and ˚ , which is larger than ibuprofen 0.45 cm3 g21 Specially, the pore size of MPC was measured at 13.9 A ˚ ) (electronic supplementary material, figure S1) The very low surface area of molecular size (4.3–10.6 A MIL-53 (Fe) can be interpreted due to its inaccessible pores and ‘breathing effect’ [37] Because of the higher surface area and larger pore volume parameters, the MPC may generate novel properties applicable for adsorption of ibuprofen 3.2 Adsorption experiments 3.2.1 Effect of MPC dosage on ibuprofen adsorption Optimizing the adsorbent dosage was performed by varying the amount of MPC (0.025–0.2 g l21) added into the ibuprofen solution 10 mg l21 at pH As observed from figure 4a, adsorption capacities of R Soc open sci 6: 190058 50 mm (c) royalsocietypublishing.org/journal/rsos 50 mm (b) 100 (b) 100 80 adsorption capacity (mg g–1) capacity (mg removal (%) g–1) removal (%) 150 100 60 40 50 20 0 0.05 0.10 0.15 dosage (g l–1) 60 40 20 0 25 50 100 ionic strength (mmol l–1) R Soc open sci 6: 190058 (d) 100 experimental value 80 75 capacity (mg g–1) capacity (mg g–1) 80 0.20 (c) 100 50 25 60 40 experimental value (mg g–1) fit of curve 20 pH solution 10 (e) 200 ( f ) 3.0 150 240 120 contact time (min) 360 experimental value (mg g–1) linear fit of curve 2.5 ln(Kc) capacity (mg g–1) royalsocietypublishing.org/journal/rsos capacity (mg g–1) (a) 200 100 experimental value (mg fit of curve 50 g–1) 1.5 0 Ce (mg l–1) 2.0 1.0 3.00 3.45 3.30 3.15 (1/T)*103 (1/K) 3.60 Figure (a) Effect of dosage, (b) ionic strength, (c) pH solution, (d) contact time, (e) concentration and (f ) temperature on the adsorption of ibuprofen onto MPC material ibuprofen gradually decreased with the increased amount of MPC material For example, nearly 170.0 mg of ibuprofen was adsorbed on per gram of MPC at dosage 0.025 g l21, while that value for dosage 0.2 g l21 was only 40.8 mg By contrast, removal absorbability of ibuprofen was generally improved with increased dosage of MPC The optimal dosage value, which ibuprofen removal efficiency reached the peak of 88.3%, was found at 0.1 g l21 It was reasonable to ascribe the increasing removal percentage of ibuprofen to enlarging the number of active sites by adding a larger quantity of MPC in aqueous solution [3,52,53] However, the removal of ibuprofen became unconducive at top dosages of MPC, possibly because the considerable addition of MPC may alter the physical properties of solid/liquid suspension (i.e viscosity), restraining the diffusion of substrate molecules on the MPC surface [54] Therefore, to minimize the quantity of MPC used, we carried out experiments with adsorbent dosage of 0.1 g l21 for the decontamination of ibuprofen in water Table Kinetic constants for the adsorption of ibuprofen on MPC parameters unit pseudo-first-order k1 min21/(mg l21)1/n qe mg g value 21 pseudo-second-order R k2 qe H ¼ k2q2e Elovich a R2 kB aB R2 mg g21 g mg21 mg (g min)21 21 21 ml (g l ) 70.74 0.9946 2.97 99.21 2.926 0.9994 0.0236 30.38 0.9543 0.0429 0.5528 0.9689 3.2.2 Effect of ionic strength on ibuprofen adsorption The existence of inorganic salts (i.e NaCl) has an enormous impact on the absorbability of adsorbents because they are likely to vary the solubility of adsorbate and electrostatic interaction between adsorbent and adsorbate [55] Therefore, to assess the impact of ionic strength on ibuprofen absorbability on MPC, adsorption process was carried out in the presence of Naỵ cations at various concentrations from 0.0 to 100.0 mmol l21 and the adsorption capacities measured are shown in figure 4b A slight decline in the amount of ibuprofen adsorbed on MPC was observed when NaCl concentrations rose The similar trends have also been reported in the recent literature [2,56] Theoretically, the cationic state of ibuprofen ( pKa ¼ 4.9) is predominant in acidic media (pH , pKa) and net surface charge of MPC is wholly positive at pH ẳ A rise in Naỵ concentration could deplete the adsorbability of neutral species (i.e ibuprofen) This may be due to the migration of Naỵ cations to the active sites of adsorbent Tan et al [57] reported the inorganic cations might compete with cationic species on the surface, resulting in a rapid decrease in chemical affinity between the ionic species and the adsorbents As constructed by magnetic particles, an increase in ionic strength can also lead to an enhancement in particle aggregation of MPC, which reduces the sorption of ibuprofen [55,58] 3.2.3 Effect of pH on ibuprofen absorbability The formation of surface charge on adsorbent and ionization of adsorbate in aqueous solution is gradually influenced by pH values because they control the electrostatic interaction between the adsorbent and the adsorbate [59] Therefore, we explored the effect of pH solution in the range of 2–10 on the absorbability of ibuprofen on MPC nanocomposite Note that the acidity, neutrality and basicity of ibuprofen solution can facilely be adjusted by NaOH and HCl solutions, and pHpzc value for MPC was herein measured at 6.5 As shown in figure 4c, the most favourable adsorption of ibuprofen occurred in acidic solutions, which reached the peak of 88.5 mg g21 at the optimal pH At very low pH values (i.e pH 2), the adsorption efficiency was considerably unconducive These observations are also commensurate with several recent reports on the adsorption of ibuprofen using various materials [1,51,55] Typically, as pH values work out smaller than pKa 5.0, the MPC surface is positively charged, and ibuprofen molecules are present under their cationic form; thus, electrostatic repulsion between two positively charged objects decreases the adsorption capacity By contrast, if the pH value is higher than pKa (ibuprofen) but lower than the pHpzc value of MPC, electrostatic attraction between ibuprofen anions and the positively charged surface of MPC is formed to improve the adsorption R Soc open sci 6: 190058 Bangham R2 b g (mg min)21  104 0.0154 royalsocietypublishing.org/journal/rsos kinetic models The effect of contact time on the adsorption of ibuprofen over MPC was investigated from to 360 According to figure 4d, the ibuprofen adsorption capacity over MPC rapidly boosted in the first 60 min, but steadily increased for the next 180 Finally, the equilibrium time was obtained after 240 The pattern for this kind of adsorption was totally in line with several reports on the sorption of ibuprofen [1,16,51,58] The adsorption kinetics of ibuprofen over MPC was studied using four models including pseudofirst-order and pseudo-second-order, Elovich and Bangham equations (electronic supplementary material, equations S1– S5), whose kinetic parameters are displayed in table and linear fitness of curves are plotted in electronic supplementary material, figure S3 As seen from table 2, the coefficient of determination (R 2) for all regression models was very high (0.9543–0.9994), suggesting the closeness of predicted data to the observed data In a previous publication, Ali et al [16] also reported adsorption of ibuprofen on iron nanoparticles Fe (0) from the aqueous phase well obeyed the mentioned adsorption kinetics Electronic supplementary material, figure S3 and table show that the pseudo-second-order model was the most suitable, demonstrated by the extremely high coefficient of determination (R ¼ 0.9994) of the linear plot Therefore, adsorption of ibuprofen over MPC can be chemisorption via electrostatic attraction between adsorbent and adsorbate [63] Unlike the adsorption behaviour described by pseudo-first-order model, which reflects the rate of adsorption relating to the number of unabsorbed sites, chemisorption generally occurred through rate-controlling steps and diffusion mechanism, and is influenced by functional groups on the surface [64] Note that chemisorption is characterized by the interaction of chemical groups between adsorbent and adsorbate It is understandable that the more chemical functional groups (acidic, lactonic, phenolic, basic groups) exist on the surface of MPC, the better the adsorption of ibuprofen is facilitated to occur In fact, we determined the quality and quantity of functional groups on the surface of MIL-53 (Fe) and MPC via Boehm titration According to table 1, it is revealed that the number of functional groups include total oxygenated (2.2 mmol g21) and basic (0.85 mmol g21) groups for MPC The above functional groups may contribute to enhancing the adsorbability of MPC towards ibuprofen Bui & Choi [65] also demonstrated that surface functional groups are a key factor for adsorption of ibuprofen Moreover, there are many works that proved the adsorption of ibuprofen and other drugs onto MOFs-derived MPC was the chemisorption process with the crucial role of functional groups [1,66 –69] Consequently, we argue that the chemisorption may be a dominance of ibuprofen adsorption in this study R Soc open sci 6: 190058 3.2.4 Adsorption kinetics 10 royalsocietypublishing.org/journal/rsos capacity The adsorption capacity observed at pH is noticeably greater than that at pH 5.0–6.0; therefore, electrostatic interaction is ineligible to spell out the dominance of adsorption capacity Guedidi et al [51] indicated the dispersive interactions might significantly contribute to the adsorption mechanism of ibuprofen in strongly acidic solutions Generally, lone-pair electrons of oxygen atoms electronically interact with protons via a dipole moment effect Therefore, the attendance of electron-rich functional groups on the adsorbent surface is necessary Herein, according to FTIR spectra, XPS characterization and Boehm titrations, MPC surface chemistry contains functional groups such as phenolic, lactonic and carboxylic groups, which can provide H-donors to form ‘donor –acceptor’ complexes with two H-acceptors of ibuprofen (electronic supplementary material, table S1) Although H-donors of these functional groups are easily deprotonated in the strongly basic solution, they can be protected in the strongly acidic media (i.e pH 3), thus easily stabilize ‘donor– acceptor’ complexes in acidic solution Bhadra et al [1] also reported the similar observation of the decisive role of donor–acceptor bonds between hydrophobic groups (hydroxyl and phenolic) on MPC for forming the H-bonds Whereas the ibuprofen solutions became more basic ( pH 7), the adsorption capacity dramatically decreased, merely 17.3 mg g21 at pH 10 This deficiency is mainly attributable to the electrostatic repulsion between two negatively charged objects including ibuprofen anions and MPC surface [59– 61] Interestingly, regardless of experimental conditions at the various pH ranges, the adsorption process of ibuprofen on the MPC still progressed In fact, there are vital factors playing their roles in maintaining the adsorption equilibrium at even harsh pH values such as p–p interaction, in which p-electrons of aromatic rings (MPC) interact with lone-pair electrons of the functional group (ibuprofen) Moreover, another different force such as Van der Waals may also enable the formations of dipole moments [62] Table Isotherm constants for the adsorption of ibuprofen on MPC 11 parameters unit Langmuir kL l mg21 Qm mg g value 21 Tempkin kF 1/n R2 kT (mg g21)/(mg l21)1/n l mg21 Qm E R2 0.9178 44.35 kJ mol 22 mg g21 kJ mol21 0.9436 0.12 142.31 2.0663 0.94 Adsorption and desorption rates were used to simulate the competition between two processes, calculated by electronic supplementary material, equation S4 where a (mg g21 min21) and b (g mg21) were adsorption and desorption rate constants, respectively As extracted from table 2, a and b values were 30.38 and 0.0236, respectively, revealing that adsorption outweighed desorption Moreover, with higher regression constant (0.9689) of Bangham’s kinetic model, it is suggested that the intra-particle diffusion mechanism may control the adsorption rate at room temperature [70] 3.2.5 Effect of concentration Adsorption isotherm equations are established to interpret the mechanisms, chemical affinity and surface properties of ibuprofen adsorption over MPC Firstly, influence of ibuprofen concentration (from to 20 mg l21) on the equilibrium adsorption capacity was studied, and shown in figure 4e To assess the adsorption isotherms of ibuprofen, experimental data were transformed into various forms to fit with isotherm models including Langmuir, Freundlich, Temkin and Dubinin –Radushkevich (D –R) equations (electronic supplementary material, equations S6– S13), while electronic supplementary material, figure S4 shows the linear regression plots of these isotherm models According to table 3, the calculated coefficients of determination R were greater than 0.9, revealing the excellent suitability of obtained four models with experimental data However, based on the R values, the compatibility appeared to follow the order: Langmuir Temkin D– R Freundlich Therefore, the monolayer adsorption might be a dominant mechanism [35] As calculated from electronic supplementary material, equation S6, the maximum adsorption capacity (Qm) was 206.5 mg g21 (table 3) Moreover, adsorption of ibuprofen drug onto MPC adsorbent is a favourable process because RL coefficient determined from electronic supplementary material, equation S7 is distributed between 0.025 and 0.521 while 1/n coefficient value obtained from electronic supplementary material, equation S8 ranged from 0.1 to 0.5 [71] To compare the effectiveness in terms of ibuprofen treatment, table summarizes the BET surface area and maximum adsorption capacities of various materials including iron particles and porous carbons Briefly, with high maximum adsorption capacity in this study compared with other materials, MPC can be an appealing nanocomposite in terms of ibuprofen remediation 3.2.6 Effect of temperature Figure 4f plots the impact of temperature (288– 318 K) on ibuprofen adsorption onto MPC Thermodynamic constants involving enthalpy (DH ), entropy (DS) and Gibbs free energy (DG) R Soc open sci 6: 190058 D–R 79.68 0.4963 7.41 BT R B 206.5 0.123 0.9892 RL R2 Freundlich 0.714 royalsocietypublishing.org/journal/rsos isotherm models Table A comparison of BET surface area and adsorption capacity of adsorbents 12 qe (mg g21) ref 199 0.39 13.9 206.5 this work AC700N2 commercial AC 809 800 0.55 0.52 — — 190.7 160.0 [51] [51] H2O2-modified AC SBA-15 762 737 0.55 1.03 — 80 146.6 0.41 [51] [65] cork powder-carbon 891 0.42 7.4 112.4 [72] physically activated cork physically activated PET 1060 1426 0.57 0.584 11.2 11.0 378.1 266.6 [72] [72] 10 physically activated coal physically activated wood 1156 899 0.646 0.626 14.9 10.5 430.4 291.9 [72] [72] 11 chemically activated wood 12 13 CO2-activated carbon H3PO4-activated carbon 14 (NH4)2S2O8-activated carbon MPC SBET (m2 g21) 879 0.553 11.4 149.1 [72] 1055 1106 0.733 0.560 12.0 9.0 178.0 312.7 [73] [73] 903 0.634 — 159.8 [73] Table Thermodynamic constants for the adsorption of ibuprofen on MPC parameters unit value DH8 kJ mol21 21 223.4 DS8 J mol K DG288 (T ¼ 288 K) DG298 (T ¼ 298 K) kJ mol21 kJ mol21 250.6 251.6 DG308 (T ¼ 308 K) DG318 (T ¼ 318 K) kJ mol21 kJ mol21 252.5 253.4 R2 — 94.5 0.9637 are also shown in table An obtained negative DH indicates the adsorption of ibuprofen over MPC was an exothermic process, which totally agreed with recent work [16] Meanwhile, the positive value of DS shows an increase in disorder occurring in heterogeneous phase because of migration between solvent and ibuprofen molecules during sorption [51] The negative values of Gibbs free energy from –50.6 to –53.4 kJ mol21 (table 5) indicated that the adsorption of ibuprofen over MPC was a spontaneous process 3.3 Recyclability study Reusability study expresses the stability and regeneration of MPC towards decontamination of ibuprofen Accordingly, eluents are expected to be sustainable and abundant Recent literature reported that acetone (CH3COCH3) could be used as a green solvent for desorption of ibuprofen from ibuprofen-loaded MPC [1] Firstly, the solid extracted after the first run was washed with acetone three times (3  10 ml), and then was reactivated at 1058C and used for the next reusability study Figure indicates a negligible decrease (17.5%) from 88.5 mg g21 (1st) to 73.4 mg g21 (5th), suggesting that MPC structure is practically stable to regenerate for many cycles R Soc open sci 6: 190058 pore size (A˚ ) adsorbents royalsocietypublishing.org/journal/rsos pore volume (cm3 g21) no 13 80 –17.5% 60 40 20 run Figure Recyclability study of MPC material Conclusion The MIL-53 (Fe) and MPC materials were successfully fabricated and structurally analysed by several physico-chemical techniques The characterization results affirmed that the nZVI is entirely embedded in microporous carbon, which obtained the hollow, defective and relatively amorphous structure with the high surface area and large volume In the adsorption experiments, the pseudo-second-order and Langmuir equations-based R coefficients were proved to be the most suitable models to describe the adsorption mechanisms Moreover, the effects of other parameters were also investigated to reveal the best removal at pH 3, concentration of 10 mg l21, dosage of 0.1 g l21 and time of h Because of high maximum adsorption capacity and good recyclability, the MPC can be used to remove the ibuprofen from water Data accessibility The datasets supporting this article have been uploaded as part of the electronic supplementary material Authors’ contributions T.V.T and D.T.C.N conceived and designed the experiments H.T.N.L., O.T.K.N., V.H.N and T.T.N performed the experiments T.V.T drafted the first draft of the manuscript, then L.G.B and T.D.N corrected the manuscript and co-supervised T.V.T directing the research, interpreted and analysed the data, and wrote the full manuscript All co-authors reviewed the manuscript All authors gave final approval for publication Competing interests We declare we have no competing interests Funding The study was supported by Science and Technology Incubator Youth Program, managed by the Center for Science and Technology Development, Ho Chi Minh Communist Youth Union, Ho Chi Minh city, Vietnam under the grant no 06/2018/HÐ-KHCN-VU Acknowledgements The authors gratefully acknowledge the financial support from Center of Science and Technology Development for Youth, Ho Chi Minh City Communist Youth Union, Ho Chi Minh city and many experimental facilities from Nguyen Tat Thanh University, Vietnam for this work References Bhadra BN, Ahmed I, Kim S, Jhung SH 2017 Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon Chem Eng J 314, 50 –58 (doi:10.1016/j.cej.2016.12.127) Zhao H, Liu X, Cao Z, Zhan Y, Shi X, Yang Y, Zhou J, Xu J 2016 Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multiwalled carbon nanotubes J Hazard Mater 310, 235– 245 (doi:10.1016/j.jhazmat.2016 02.045) Farahani BV, Behbahani GR, Javadi N 2016 Functionalized multi walled carbon nanotubes as a carrier for doxorubicin: drug adsorption study and statistical optimization of drug loading by factorial design methodology J Braz Chem Soc 27, 694– 705 (doi:10.5935/ 0103-5053.20150318) Pusceddu FH, Choueri RB, Pereira CDS, Cortez FS, Santos DRA, Moreno BB, Santos AR, Rogero JR, Cesar A 2018 Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints Environ Pollut 232, 274– 283 (doi:10.1016/j envpol.2017.09.046) Lewis F, Connolly MP, Bhatt A 2018 A pharmacokinetic study of an ibuprofen topical patch in healthy male and female adult volunteers Clin Pharmacol Drug Dev 7, 684–691 (doi:10.1002/cpdd.423) Ben Maamar M et al 2017 Ibuprofen results in alterations of human fetal testis development Sci Rep 7, 44184 (doi:10.1038/ srep44184) Mie`ge C, Choubert JM, Ribeiro L, Eusebe M, Coquery M 2008 Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions—conception of a database and first results Water Sci Technol 57, 49 –56 (doi:10.2166/wst.2008.823) R Soc open sci 6: 190058 royalsocietypublishing.org/journal/rsos adsorption capacity (mg g–1) 100 10 11 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Fischer-Tropsch catalysts Nat Commun 6, 6451 (doi:10.1038/ncomms7451) Nguyen DTC 2019 Metal-organic framework MIL-53(Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization J Chem 2019, – 11 (doi:10.1155/2019/5602957) Van Tran T, Nguyen DTC, Le HTN, Bach LG, Vo DVN, Hong SS, Phan T-QT, Nguyen TD 2019 Tunable synthesis of mesoporous carbons from Fe3O(BDC)3 for chloramphenicol antibiotic remediation Nanomaterials 9, 237 (doi:10 3390/nano9020237) Van Tran T, Bui QTP, Nguyen TD, Ho VTT, Bach LG 2017 Application of response surface methodology to optimize the fabrication of ZnCl2-activated carbon from sugarcane bagasse for the removal of Cu2ỵ Water Sci Technol 75, 2047 2205 (doi:10.2166/wst 2017.066) Bach LG, Van Tran T, Nguyen TD, Van Pham T, Do ST 2018 Enhanced adsorption of methylene blue onto graphene oxide-doped XFe2O4 (X¼Co, Mn, Ni) nanocomposites: kinetic, isothermal, thermodynamic and recyclability studies Res Chem Intermed 44, 1661 –1687 (doi:10.1007/s11164-017-3191-1) Yan Z, Zhang W, Gao J, Lin Y, Li J, Lin Z, Zhang L 2015 Reverse-phase high performance liquid chromatography separation of positional isomers on a MIL-53(Fe) packed column RSC Adv 5, 40 094–40 102 (doi:10.1039/ C5RA02262B) Van Tran T, Bui QTP, Nguyen TD, Le NTH, Bach LG 2017 A comparative study on the removal efficiency of metal ions (Cu2ỵ, Ni2ỵ, and Pb2ỵ) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology Adsorpt Sci Technol 35, 72– 85 (doi:10.1177/ 0263617416669152) Van Tran T, Dai Cao V, Huu Nguyen V, Hoang BN, Vo D-VN, Nguyen TD, Bach LG In press MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions J Environ Chem Eng 102902 (doi:10.1016/j jece.2019.102902) Van Tran T, Nguyen DTC, Le HTN, Tu TTK, Le ND, Lim KT, Bach LG, Nguyen TD 2019 MIL-53 (Fe)directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation J Environ Chem Eng 7, 102881 (doi:10.1016/j.jece.2019.102881) Wezendonk TA et al 2016 Elucidating the nature of Fe species during pyrolysis of the FeBTC MOF into highly active and stable Fischer – Tropsch catalysts ACS Catal 6, 3236 –3247 (doi:10.1021/acscatal.6b00426) Zhang H et al 2016 Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metalorganic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers Adv Mater 28, 3703 –3710 (doi:10.1002/adma 201505187) Fang R, Luque R, Li Y 2016 Selective aerobic oxidation of biomass-derived HMF to 2,5diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst Green Chem 18, 3152 –3157 (doi:10.1039/C5GC03051J) 14 R Soc open sci 6: 190058 12 20 alkynes: role of bipyridine ligand Catal Sci Technol 5, 851–859 (doi:10.1039/ C4CY01074D) Trinh ND, Hong S-S 2015 Photocatalytic decomposition of methylene blue over MIL53(Fe) prepared using microwave-assisted process under visible light irradiation J Nanosci Nanotechnol 15, 5450 – 5454 (doi:10.1166/jnn.2015.10378) Bayazit S¸S, Danalıog˘lu ST, Abdel Salam M, Kerkez Kuyumcu Oă 2017 Preparation of magnetic MIL101 (Cr) for efficient removal of ciprofloxacin Environ Sci Pollut Res 24, 25 452 –25 461 (doi:10.1007/s11356-017-0121-0) Flaig RW, Osborn Popp TM, Fracaroli AM, Kapustin EA, Kalmutzki MJ, Altamimi RM, Fathieh F, Reimer JA, Yaghi OM 2017 The chemistry of CO2 capture in an aminefunctionalized metal –organic framework under dry and humid conditions J Am Chem Soc 139, 12 125– 12 128 (doi:10.1021/jacs 7b06382) La´zaro IA, Forgan RS 2019 Application of zirconium MOFs in drug delivery and biomedicine Coord Chem Rev 380, 230 –259 (doi:10.1016/j.ccr.2018.09.009) Stefaniuk M, Oleszczuk P, Ok YS 2016 Review on nano zerovalent iron (nZVI): from synthesis to environmental applications Chem Eng J 287, 618–632 (doi:10.1016/j.cej 2015.11.046) Xue W, Huang D, Zeng G, Wan J, Cheng M, Zhang C, Hu C, Li J 2018 Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review Chemosphere 210, 1145 –1156 (doi:10.1016/j.chemosphere.2018.07.118) Teng W et al 2017 Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis J Mater Chem A 5, 4478 –4485 (doi:10.1039/ C6TA10007D) Yao W, Wu S, Zhan L, Wang Y 2019 Twodimensional porous carbon-coated sandwichlike mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries Chem Eng J 361, 329– 341 (doi:10.1016/j.cej.2018.08.217) Hu Q, Yu M, Liao J, Wen Z, Chen C 2018 Porous carbon-coated NaTi2(PO4)3 with superior rate and low-temperature properties J Mater Chem A 6, 2365 –2370 (doi:10.1039/C7TA10207K) Gan Q, He H, Zhao K, He Z, Liu S 2018 Preparation of N-doped porous carbon coated MnO nanospheres through solvent-free in-situ growth of ZIF-8 on ZnMn2O4 for highperformance lithium-ion battery anodes Electrochim Acta 266, 254– 262 (doi:10.1016/j electacta.2018.02.010) Mu Y, Jia F, Ai Z, Zhang L 2017 Iron oxide shell mediated environmental remediation properties of nano zero-valent iron Environ Sci Nano 4, 27– 45 (doi:10.1039/C6EN00398B) Chen Y-Z, Zhang R, Jiao L, Jiang H-L 2018 Metal– organic framework-derived porous materials for catalysis Coord Chem Rev 362, –23 (doi:10.1016/j.ccr.2018.02.008) Santos VP et al 2015 Metal organic frameworkmediated synthesis of highly active and stable royalsocietypublishing.org/journal/rsos Monteiro SC, Boxall ABA 2010 Reviews of environmental contamination and toxicology, pp 53–154 Berlin, Germany: Springer Tixier C, Singer HP, Oellers S, Muăller SR 2003 Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters Environ Sci Technol 37, 1061 –1068 (doi:10.1021/es025834r) Nikolaou A, Meric S, Fatta D 2007 Occurrence patterns of pharmaceuticals in water and wastewater environments Anal Bioanal Chem 387, 1225 –1234 (doi:10.1007/s00216-0061035-8) Hung C-H, Yuan C, Wu M-H, Chang Y-C 2018 Electrochemical degradation of ibuprofencontaminated soils over Fe/Al oxidation electrodes Sci Total Environ 640 –641, 1205 –1213 (doi:10.1016/j.scitotenv.2018 06.001) Urtiaga AM, Iban˜ez R, Rivero MJ, Ortiz I 2018 Integration of electrochemical advanced oxidation with membrane separation and biodegradation In Electrochemical water and wastewater treatment (eds CA Martı´nez-Huitle, MA Rodrigo, OBT-EW, WT Scialdone), pp 495–510 Oxford, UK: Butterworth-Heinemann Saeid S, Tolvanen P, Kumar N, Eraănen K, Peltonen J, Peurla M, Mikkola J-P, Franz A, Salmi T 2018 Advanced oxidation process for the removal of ibuprofen from aqueous solution: a non-catalytic and catalytic ozonation study in a semi-batch reactor Appl Catal B Environ 230, 77– 90 (doi:10.1016/j.apcatb 2018.02.021) Calero-Dı´az G, Monteoliva-Garcı´a A, Leyva-Dı´az JC, Lo´pez-Lo´pez C, Martı´n-Pascual J, Torres JC, Poyatos JM 2017 Impact of ciprofloxacin, carbamazepine and ibuprofen on a membrane bioreactor system: kinetic study and biodegradation capacity J Chem Technol Biotechnol 92, 2944 – 2951 (doi:10.1002/ jctb.5316) Me´ndez-Arriaga F, Torres-Palma RA, Pe´trier C, Esplugas S, Gimenez J, Pulgarin C 2008 Ultrasonic treatment of water contaminated with ibuprofen Water Res 42, 4243– 4248 (doi:10.1016/j.watres.2008.05.033) Ali I, AL-Othman ZA, Alwarthan A 2016 Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water J Mol Liq 219, 858–864 (doi:10.1016/j molliq.2016.04.031) Ondarts M, Reinert L, Guittonneau S, Baup S, Delpeux S, Le´veˆque J-M, Duclaux L 2018 Improving the adsorption kinetics of ibuprofen on an activated carbon fabric through ultrasound irradiation: simulation and experimental studies Chem Eng J 343, 163–172 (doi:10.1016/j.cej.2018.02.062) Tran TV, Le HTN, Ha HQ, Duong XNT, Nguyen LH-T, Doan TLH, Nguyen HL, Truong T 2017 A five coordination Cu(II) cluster-based MOF and its application in the synthesis of pharmaceuticals via sp3C– H/N–H oxidative coupling Catal Sci Technol 7, 3453 –3458 (doi:10.1039/C7CY00882A) Le HTN, Tran TV, Phan NTS, Truong T 2015 Efficient and recyclable Cu2(BDC)2(BPY)catalyzed oxidative amidation of terminal 44 46 47 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 thermodynamics and mechanism J Environ Chem Eng 5, 601– 611 (doi:10.1016/j.jece 2016.12.019) Bui TX, Choi H 2009 Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15 J Hazard Mater 168, 602 –608 (doi:10.1016/j.jhazmat.2009.02.072) An HJ, Bhadra BN, Khan NA, Jhung SH 2018 Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6derived porous carbon Chem Eng J 343, 447–454 (doi:10.1016/j.cej.2018.03.025) Sarker M, Song JY, Jhung SH 2018 Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites Chem Eng J 335, 74–81 (doi:10 1016/j.cej.2017.10.138) Bhadra BN, Jhung SH 2017 A remarkable adsorbent for removal of contaminants of emerging concern from water: porous carbon derived from metal azolate framework-6 J Hazard Mater 340, 179– 188 (doi:10.1016/j jhazmat.2017.07.011) Seo PW, Khan NA, Jhung SH 2017 Removal of nitroimidazole antibiotics from water by adsorption over metal –organic frameworks modified with urea or melamine Chem Eng J 315, 92 –100 (doi:10.1016/j.cej 2017.01.021) Tran VT, Nguyen DT, Ho VTT, Hoang PQH, Bui PQ, Bach LG 2017 Efficient removal of Ni2ỵ ions from aqueous solution using activated carbons fabricated from rice straw and tea waste J Mater Environ Sci 8, 426 –437 Van Thuan T, Quynh BTP, Nguyen TD, Ho VTT, Bach LG 2017 Response surface methodology approach for optimization of Cu2ỵ, Ni2ỵ and Pb2ỵ adsorption using KOH-activated carbon from banana peel Surf Interfac 6, 209– 217 (doi:10.1016/j.surfin.2016.10.007) Mestre AS, Pires J, Nogueira JMF, Parra JB, Carvalho AP, Ania CO 2009 Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure Bioresour Technol 100, 1720 –1726 (doi:10.1016/j.biortech.2008.09.039) Mansouri H, Carmona RJ, Gomis-Berenguer A, Souissi-Najar S, Ouederni A, Ania CO 2015 Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons J Colloid Interface Sci 449, 252 –260 (doi:10.1016/j.jcis 2014.12.020) 15 R Soc open sci 6: 190058 48 55 acid/b-cyclodextrin composite from aqueous solution New J Chem 42, 2216 –2223 (doi:10 1039/C7NJ03770H) Bui TX, Choi H 2010 Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica Chemosphere 80, 681– 686 (doi:10.1016/j chemosphere.2010.05.046) Ren T, Han L, Liu R, Ma C, Chen X, Zhao S, Zhang Y 2017 Influence of inorganic salt on retention of ibuprofen by nanofiltration Sep Purif Technol 189, 382 –388 (doi:10.1016/j seppur.2017.08.035) Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J 2015 Adsorption of Cu2ỵ, Cd2ỵ and Ni2ỵ from aqueous single metal solutions on graphene oxide membranes J Hazard Mater 297, 251–260 (doi:10.1016/j.jhazmat.2015.04.068) Cho H-H, Huang H, Schwab K 2011 Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes Langmuir 27, 12 960–12 967 (doi:10.1021/la202459g) Tran HN, Wang Y-F, You S-J, Chao H-P 2017 Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of p –p interactions Process Saf Environ Prot 107, 168– 180 (doi:10.1016/j psep.2017.02.010) Tran HN, Chao H-P, You S-J 2018 Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations Adsorpt Sci Technol 36, 95– 113 (doi:10.1177/0263617416684837) Sajjadi S-A et al 2018 Efficient mercury removal from wastewater by pistachio wood wastesderived activated carbon prepared by chemical activation using a novel activating agent J Environ Manage 223, 1001 – 1009 (doi:10 1016/j.jenvman.2018.06.077) Franz M, Arafat HA, Pinto NG 2000 Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon Carbon N.Y 38, 1807 –1819 (doi:10.1016/S00086223(00)00012-9) Tan KL, Hameed BH 2017 Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions J Taiwan Inst Chem Eng 74, 25– 48 (doi:10.1016/j.jtice 2017.01.024) Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X 2017 Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, royalsocietypublishing.org/journal/rsos 45 Zhang Y, Li G, Lu H, Lv Q, Sun Z 2014 Synthesis, characterization and photocatalytic properties of MIL-53(Fe)–graphene hybrid materials RSC Adv 4, 7594 –7600 (doi:10 1039/c3ra46706f) Gulicovski JJ, Cˇerovic´ LS, Milonjic´ SK 2008 Point of zero charge and isoelectric point of alumina Mater Manuf Process 23, 615 –619 (doi:10 1080/10426910802160668) Bakatula EN, Richard D, Neculita CM, Zagury GJ 2018 Determination of point of zero charge of natural organic materials Environ Sci Pollut Res 25, 7823 – 7833 (doi:10.1007/s11356-0171115-7) Li J, Zhou Q, Liu Y, Lei M 2017 Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene Sci Technol Adv Mater 18, – 16 (doi:10.1080/14686996.2016.1246941) Woo H, Park J, Lee S, Lee S 2014 Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction Chemosphere 97, 146– 152 (doi:10.1016/j chemosphere.2013.11.010) Sun Y-P, Li X, Cao J, Zhang W, Wang HP 2006 Characterization of zero-valent iron nanoparticles Adv Colloid Interface Sci 120, 47– 56 (doi:10.1016/j.cis.2006.03.001) Cao Z, Liu X, Xu J, Zhang J, Yang Y, Zhou J, Xu X, Lowry GV 2017 Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron Environ Sci Technol 51, 11 269–11 277 (doi:10.1021/acs.est.7b02480) Guedidi H, Reinert L, Le´veˆque J-M, Soneda Y, Bellakhal N, Duclaux L 2013 The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen Carbon N.Y 54, 432 –443 (doi:10 1016/j.carbon.2012.11.059) Mondal NK, Bhaumik R, Das B, Roy P, Datta JK, Bhattacharyya S, Bhattacharjee S 2015 Neural network model and isotherm study for removal of phenol from aqueous solution by orange peel ash Appl Water Sci 5, 271 –282 (doi:10.1007/ s13201-014-0188-4) Zhang X, Wang X, Chen Z 2017 A novel nanocomposite as an efficient adsorbent for the rapid adsorption of Ni(II) from aqueous solution Materials 10 1124 –1146 (doi:10 3390/ma10101124) Yu F, Chen D, Ma J 2018 Adsorptive removal of ciprofloxacin by ethylene diaminetetraacetic Hindawi Journal of Chemistry Volume 2019, Article ID 5602957, 11 pages https://doi.org/10.1155/2019/5602957 Research Article Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization Duyen Thi Cam Nguyen ,1 Hanh Thi Ngoc Le,2 Trung Sy Do,3 Van Thinh Pham,4 Dai Lam Tran ,5 Van Thi Thanh Ho ,6 Thuan Van Tran ,7 Duy Chinh Nguyen ,7 Trinh Duy Nguyen ,7 Long Giang Bach ,7 Huynh Ky Phuong Ha ,8 and Van Thuan Doan Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam Institute of Hygiene and Public Health, Ho Chi Minh City, Vietnam Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam Dong Nai Technology University, Bien Hoa City, Dong Nai Province, Vietnam Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam Ho Chi Minh University of Natural Resources and Environment, Ho Chi Minh City, Vietnam NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam Correspondence should be addressed to Van Thuan Doan; doanthuanms@gmail.com Received December 2018; Revised 21 January 2019; Accepted February 2019; Published March 2019 Guest Editor: Nguayen Van Noi Copyright © 2019 Duyen Thi Cam Nguyen et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited Ibuprofen contamination from water sources has been increasingly alarming due to its environmentally accumulative retention; however, the strategies for ibuprofen-containing water treatment are still an enormous challenge Herein, we described the utilization of metal-organic frameworks MIL-53(Fe) (MIL � Materials of Institute Lavoisier) for the adsorption of ibuprofen in synthetic solution Firstly, the MIL-53(Fe) was solvothemally synthesized and then characterized using the X-ray diffraction and Fourier-transform infrared spectroscopy techniques The optimization of ibuprofen adsorption over MIL-53(Fe) was performed with three independent variables including ibuprofen concentration (1.6–18.4 mg/L), adsorbent dosage (0.16–1.84 g/L), and pH (2.6–9.4) according to the experimental design from response surface methodology Under the optimized conditions, more than 80% of ibuprofen could be eliminated from water, indicating the promising potential of the MIL-53(Fe) material for treatment of this drug Kinetic and isotherm models also were used to elucidate the chemisorption and monolayer behavior mechanisms of ibuprofen over MIL-53(Fe) Introduction Ibuprofen ((±R, S)-2-(4-(2-methylpropyl)phenyl)propanoic acid, IBU), a nonsteroidal anti-inflammatory drugs (NSAIDs), has widely been used for the treatment of bacterial infection-related diseases in many countries (its chemical structure is shown in Figure 1) [1–4] However, there is a rapid acceleration in IBU contamination due to the ineffective treatment of wastewater sources, derived from hospitals and pharmaceutical manufacturers [5–7] According to recent environmental reports, varying amounts of the IBU residue have been detected in some rivers (i.e., Thames River, UK (0.783 μg/L), and Aura River, Finland (20 μg/L)), significantly exceeding the permissible standards for human health [8] Besides, the accumulation of the IBU pollutant in water may support Journal of Chemistry CH3 OH CH3 H3C O ® Figure 1: 2D structure of the IBU molecule by ChemDraw ultra 12.0 program the antibiotics-resistant bacteria existing in the environment [1, 5, 9] Therefore, techniques for eliminating this contaminant have received a great attention Adsorption is often regarded as a common method for the removal of pollutants in gas and liquid phases [10–15] Several strong points of this approach include costeffectiveness and high performance [16, 17] Thanks to the good reusability of absorbents, the overall cost can be reduced Moreover, the adsorption is highly compatible with organic-derived hazardous wastes including IBU contaminant [4] Therefore, the IBU degradation by the adsorption process has been rapidly developed In the adsorption process, solid adsorbents play a decisive role in removing the contaminants [18] Heterogeneous materials have undergone a long history, especially nanostructured zeolites and mesoporous silica [4, 19–22] Thanks to the highly porous structure along with open metal sites, these materials have been considered as ideal platforms towards diverse applications in fuel cells, chemical sensing, energy conversion, catalysis, drug delivery, and thin films [23–25] However, the synthesis strategies for such materials were carried out via many elaborate steps combined with severe condition-controlled reactions, limiting their widespread applications [26] Several studies reported the use of hazardous and expensive agents (i.e., reversible additionfragmentation chain transfer (RAFT)) as vital components that control the growing of polymeric organic chains in controlled radical polymerizations, thus imposing the adverse impacts on the environment [26] It is evident that finding out the greener and sustainable pathways for the fabrication of nanostructured materials is necessary Metal-organic frameworks (MOFs) are advanced materials constructed by metal ions or clusters and organic ligands via the coordination bonds [27–30] Recently, they are considered as remarkable and promising materials because of good crystallinity, complex topologies, high porosity, tunable chemical properties, and large metal cluster density, and thereby, MOFs have attracted much attention in many fields such as drug delivery, catalysis, gas storage, sensor, and adsorption [31] MIL-53(Fe) or Fe(III)(OH)(1,4BDC) is a typical class of MOFs generated by a combination between iron(III) cations and 1,4-dicarboxylic acid [32, 33] This structure consists of FeO6 hexagonal chains connecting with dicarboxylate anions to form the three-dimensional networks or SBUs (secondary building units) [34–36] One of the most emergent features of MIL-53(Fe) compared with other MOFs is the “breathing effect,” which experiences a breathing transition in the presence of guest molecules, thus creating the structural flexibility [37] Moreover, this material can be easily synthesized via the conventional strategies, such as microwave or solvothermal method [38, 39] Unlike the other MOFs such as MIL-88B(Cr) or MIL-101(Cr), which also represents the same “breathing effect,” MIL-53(Fe) is chemically stable and constituted of lower toxic metal centers and thus has gained much attention [40] In this work, we described the MIL-53(Fe) synthesis by the solvothermal method and its application in IBU adsorption Some techniques including XRD and FT-IR were used to analyze the as-synthesized products Moreover, the experiments were optimized based on the response surface methodology Experimental 2.1 Chemicals and Instruments All chemicals in this study were directly used without any purification 1,4-Benzenedicarboxylic acid (H2BDC, 98%) was purchased from Merck Iron(III) chloride hexahydrate (FeCl3·6H2O, 99.0%), and N,N-dimethylformamide (DMF, 99.5%) were purchased from Xilong Chemical, China The D8 Advance Bruker powder diffractometer was used to record the X-ray powder diffraction (XRD) profiles using Cu-Kα beams as excitation sources The FT-IR spectra were recorded on the Nicolet 6700 spectrophotometer to explore the functional groups The UV-Vis spectrophotometer was used to determine the IBU concentration at wavelength 222 nm All analytic samples were reactivated at 105°C under nitrogen atmosphere 2.2 Synthesis of MIL-53(Fe) The MIL-53(Fe) was solvothermally prepared according to a recent study [37] Firstly, 1.35 g of FeCl3·6H2O and 0.83 g of H2BDC were dissolved in 25 mL DMF The mixture was then transferred into a Teflon-lined autoclave and heated up at 150°C for h The yellow solid was extracted, refluxed with DMF overnight, washed with C2H5OH for three times (3 × 10 mL), and then dried at 80°C for storage in a desiccator Figure illustrates the synthesis strategy of MIL-53(Fe) 2.3 Experimental Batches The stock solutions (20 mg/L) were prepared by dissolving the IBU substrate in distilled water Various levels of concentration (1.8–18.4 mg/L) for the adsorption were generated by consecutively diluting the initial stock solutions A series of HCl and KOH solutions was utilized to adjust the pH indexes Herein, twenty experimental runs were randomly performed at room temperature following the response surface methodology (RSM) [42] Firstly, MIL-53(Fe) samples (0.16–1.84 g/L) were mixed with 50 mL of ibuprofen solutions (1.8–18.4 mg/L) at various ranges of pH The flasks were sealed and placed in the shaking tables (200 rpm) After the adsorption process reached the equilibrium state at 120 min, the adsorbent solids were dispended and separated using the simple centrifugation The IBU residual concentrations were identified using UV-Vis spectroscopy at the wavelength of

Ngày đăng: 05/10/2023, 20:08

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan