Nghien cuu che tao carbon cellulose aerogel tu hon hop soi la dua va soi cotton ung dung trong hap phu pgs Nghien cuu che tao carbon cellulose aerogel tu hon hop soi la dua va soi cotton ung dung trong hap phu pgs
IăH CăQU CăGIAăTHÀNHăPH ăH ăCHệăMINH TR NGă IăH CăBÁCHăKHOA TR Nă ỊNH LÂM NGHIÊN C U, CH T O CARBON CELLULOSE AEROGEL T H N H P S I LÁ D A VÀ S I COTTON NG D NG TRONG H P PH CARBON CELLULOSE AEROGEL PRODUCTION FROM COMPOSITES OF PINEAPPLE LEAF AND COTTON FIBERS FOR APPLICATION IN ADSORTION ChuyênăngƠnh:ăK ăTHU TăHịAăH C Mưăs :ă8520301 LU NăV NăTH CăS TP.ăH ăCHệăMINH,ăthángă07 n mă2022 Cơng trình đ c hồn thành t i: Tr Thành ph H Chí Minh Cán b h ng i H c Bách Khoa ậ i h c Qu c gia ng d n khoa h c: PGS TS LÊ TH KIM PH NG PGS.TS LÊ ANH KIÊN Cán b ch m nh n xét 1: PGS.TS PH M TRUNG KIÊN Cán b ch m nh n xét 2: TS PH M TH H NG PH NG Lu n v n th c s đ c b o v t i Tr ng i H c Bách Khoa ậ Thành ph H Chí Minh, ngày 25 tháng 07 n m 2022 i h c Qu c gia Thành ph n H i đ ng đánh giá lu n v n th c s g m: PGS.TS Nguy n Tr ng S n - Ch t ch PGS.TS Ph m Trung Kiên - y viên ph n bi n TS Ph m Th H ng Ph TS.Tr n Ph ng - y viên ph n bi n c Nh t Uyên - y viên TS Ph m Hoàng Huy Ph c L i - Th kỦ Xác nh n c a Ch t ch H i đ ng đánh giá Lu n v n Tr ng Khoa qu n lỦ chuyên ngành sau lu n v n đư đ c s a ch a (n u có) CH T CH H I NG TR NG KHOA K THU T HịA H C IăH CăQU CăGIAăTP.ăHCM TR NGă C NGăHọAăXẩăH IăCH ăNGH AăVI TăNAM IăH CăBÁCHăKHOA căl pă- T ădoă- H nhăphúc NHI M V LU NăV NăTH CăS H tên h c viên: Tr n ình Lâm MSHV: 1970065 Ngày, tháng, n m sinh: 16/05/1995 N i sinh: Qu ng Ngưi Chuyên ngành: K thu t Hóa h c Mư s : 8520301 I.ăTÊNă TÀI: Nghiên c u, ch t o carbon cellulose aerogel t h n h p s i d a s i cotton ng d ng h p ph Carbon cellulose aerogel production from composites of pineapple leaf and cotton fiber for application in adsortion II NHI M V VÀ N I DUNG: Nghiên c u quy trình đ t ng h p v t li u carbon cellulose aerogel Kh o sát c u trúc ậ hình thái ậ đ c tính c a v t li u carbon cellulose aerogel Th nghi m kh n ng h p ph methylene blue Cu2+c a v t li u carbon cellulose aerogel III NGÀY GIAO NHI M V : 14/02/2022 IV NGÀY HOÀN THÀNH NHI M V : 17/06/2022 V CÁN B H NG D N: PGS TS LÊ TH KIM PH NG PGS.TS LÊ ANH KIÊN TP HCM, ngày 25 tháng 07 n m 2022 CÁNăB ăH NGăD N TR CH NHI MăB ăMỌNă ÀOăT O NGăKHOAăK ăTHU TăHịAăH C i L I C Mă N đ tđ c k t qu nh hôm nay, bên c nh nh ng n l c c g ng c a b n thân không th không k đ n s h ng d n giúp đ t n tình c a q Th y Cơ c ng nh s đ ng viên, khích l c a gia đình b n bè su t th i gian th c hi n đ tài lu n v n V i lòng bi t n sâu s c, tr c h t em xin g i l i c m n chân thành đ n PGS TS Lê Th Kim Ph ng PGS TS Lê Anh Kiên đư giao đ tài nhi t tình giúp đ Th y Cô đư t o u ki n, t n tình d y b o truy n đ t nh ng ki n th c quý báu su t trình nghiên c u đ giúp em hoàn thành lu n v n c bi t g i l i c m n sâu s c đ n PGS TS Lê Th Kim Ph ng ng tr c ti p h i đư ng d n giúp em có th hồn thành lu n v n m t cách hoàn thi n Không ch h c h i t cô nh ng ki n th c chun mơn mà cịn h c h i đ c tác phong làm vi c nghiêm túc, khoa h c c n tr ng C m n phịng thí nghi m Q Trình & Thi t B c a Vi n KH-CN Quân s Vi n Nhi t i Môi Tr ng đư t o u ki n đ em có d ng c thi t b giúp em hoàn thành đ tài Chân thành c m n anh Ph m Qu c Nghi p c a Vi n KH-CN Quân s -Vi n Nhi t i Môi Tr ng đư giúp đ em su t q trình làm thí nghi m Em xin chân thành c m n Sinh viên th c hi n Tr n ình Lâm ii TĨM T T LU NăV N Trong lu n v n này, carbon cellulose aerogel đ aerogel b ng trình carbon hóa mơi tr c t ng h p t cellulose ng khí N2 Q trình carbon hóa g m hai giai đo n: than hóa ho t hóa, đ u di n mơi tr ng khí tr Q trình ho t hóa có th s d ng tác nhân ho t hóa v t lý ho c hóa h c, th ng s d ng CO2 KOH Trong nghiên c u này, quy trình ho t hóa b ng tác nhân ho t hóa v t lý CO2 tác nhân ho t hóa h c KOH đ gian ho t hóa đ ng ch t ho t hóa th i c kh o sát C u trúc - hình thái - đ c tính c a v t li u carbon cellulose aerogel đ vi n t c nghiên c u, l c xác đ nh b ng ph ng pháp: Kh i l ng riêng, kính hi n quét, ph h ng ngo i chuy n hóa Fourier di n tích b m t riêng Brunauer - Emmett - Teller Carbon cellulose aerogel t ng h p có kh i l 0.0236 g/cm3 t ng ng v i m u ho t hóa v t lý m u ho t hóa hóa h c đ nh h d ng làm v t li u h p ph n ng đ ban đ u đ n dung l đ ny ut ng c a th i gian, kh i l ng h p ph đư đ ng h c trình h p ph đ ki n b c m t b c hai v i m u ho t hóa hóa h c 886.58 ph methylene blue t i đa t c ng ng ch t h p ph , c nghiên c u thông qua kh o sát c kh o sát v i mơ hình đ ng h c bi u ng nhi t h p ph đ Langmuir Freundlich S n ph m thu đ t ng riêng th p 0.0212 g/cm3 c đánh giá v i mơ hình đ ng nhi t c có di n tích b m t riêng 970,20 /g /g v i m u ho t hóa v t lý, kh n ng h p ng ng 263 mg/g 250 mg/g, h p ph Cu2+ t i đa ng ng 69.44mg/g 62.11 mg/g ng h c h p ph methylene blue thích h p v i mơ hình h p ph bi u ki n b c 1, đ ng h c h p ph Cu2+ thích h p v i mơ hình h p ph bi u ki n b c H p ph đ ng nhi t thích h p v i mơ hình đ ng nhi t Langmuir K t qu ch ng t v t li u t ng h p carbon cellulose aerogel t s i d a s i cotton thích h p đ làm v t li u h p ph ng th i, u ki n thí nghi m s c s đ xây d ng quy trình s n xu t quy mô công nghi p iii ABSTRACT In this thesis, carbon cellulose aerogel is synthesized from cellulose aerogel by carbonization under a N2 atmosphere The carbonization process consists of twostages: heat treatment and activation, both taking place in an inert atmosphere Activation can use a physical or chemical activating agent, often using CO2 and KOH The activation process by physical agent CO2 and chemical agent KOH were studied in this work KOH impregnation ratio and activation time were investigated The structure - morphology - properties of carbon cellulose aerogel were determined by the following methods: Density, scanning electrone microscopy, Fourier Transform Infrared Spectroscopy, and Brunauer - Emmett - Teller specific surface area The synthesized carbon cellulose aerogel has a low density of 0.0212 g/cm3 and 0.0236 g/cm3, respectively, for physical and chemically activated samples, which are used as adsorbents material The effects of time, amount of adsorbent, and initial concentration on adsorption capacity were studied through single-factor survey The adsorption kinetics was investigated with the pseudo-first-order model and pseudo-second-order model The adsorption isotherm was evaluated with Langmuir and Freundlich isotherm models The product has a specific surface area of 970.20 m2/g with the chemically activated sample and 886.58 m2/g with the physically activated sample, the maximum adsorption capacity of methylene blue corresponding to 263 mg/g and 250 mg/g, maximum Cu2+ adsorption 69.44mg/g and 62.11 mg/g respectively The adsorption kinetics for methylene blue is suitable for the pseudo-first-order model and the Cu2+ adsorption kinetics is suitable for the pseudo-second-order model The adsorption isotherm comply with the Langmuir isotherm model These results show that carbon cellulose aerogel was synthesized from pineapple leaf and cotton fibers can be used as adsorbents material iv L IăCAMă OAN Tác gi xin cam đoan lu n v n cơng trình nghiên c u th c s c a cá nhân tác gi đ c th c hi n d is h ng d n c a cô PGS TS LÊ TH KIM PH NG th y PSG TS LÊ ANH KIÊN Các s li u, k t qu nghiên c u lu n v n hoàn toàn trung th c, ch a t ng đ c công b b t c m t cơng trình khác tr giúp đ cho vi c hoàn thành lu n v n đ u đư đ d n lu n v n đ u đư đ c M i s c c m n, thơng tin trích c ch rõ ngu n g c Tác gi xin ch u trách nhi m v nghiên c u c a Tác gi Tr n ình Lâm v M CL C L I C Mă N ii TÓM T T LU NăV N iii L IăCAMă OAN v M C L C vi DANH M C HÌNH viii DANH M C B NG x DANH M C CH VI T T T xi M U CH NGă1:T NG QUAN 1.1 Carbon cellulose aerogel 1.1.1 T ng quan 1.1.2 Ph ngăpháp t ng h p carbon cellulose aerogel .7 1.1.2.1 Quá trình Sol- Gel 1.1.2.2 S y khô gel 1.1.2.3 S y khô CO2 siêu t i h n 10 1.1.2.4 S yăth ngăhoa .11 áp su tămôiătr 1.1.2.5 S y 1.1.3 ng 12 Q trình carbon hóa 12 1.1.3.1 Ph ngăphápăho t hóa v t lý 13 1.1.3.2 Ph ngăphápăho t hóa hóa h c 14 1.2 ng d ng c a carbon cellulose aerogel 15 1.3 Các nghiên c u t ng h p carbon aerogel ng d ng h p ph 18 1.3.1 1.3.2 ng d ng h p ph khí 18 ng d ng x lỦăn c 21 1.4 Lý thuy t v h p ph 23 1.4.1 Khái ni m phân lo i h p ph 23 1.4.2 Cácăd ngăđ ngăh păph ăđ ngănhi t 26 1.4.3 Cácăy uăt ă nhăh CH NGă2:ăPH ngăđ năkh ăn ngăh păph .30 NGăPHÁPăTH C NGHI M 31 2.1 T ng h p v t li u 31 2.1.1 T ng h p Carbon cellulose aerogel .31 vi 2.1.2 Kh o sát y u t nhăh ngăđ n trình ho t hóa .33 2.2 Kh oăsátăcácăđ cătr ngălỦ- hóa 34 2.2.1 Xácăđ nh ch s h p ph 34 2.2.1.1.ăXácăđ nh ch s h p ph methylene blue .34 2.2.1.2.ăXácăđ nh ch s h p ph Cu2+ 37 2.2.2.ăPhépăđoăph h ng ngo i (FTIR) 39 2.2.3 K thu t phân tích thành ph n v t ch t EDX .40 2.2.4 PhépăđoăSEM 41 2.2.5.ăPhépăđoăBET 42 CH NGă3:ăK T QU VÀ BÀN LU N 43 3.1 c tính c u trúc c a v t li u 43 3.1.1 Hình thái phân tích c u trúc 43 3.1.2 Di n tích b m tăriêngăvƠăđ cătr ngăl x p 48 3.1.3 Phơnătíchăb ăm tăhóaăh c .50 3.2 Quá trình h p ph c a carbon cellulose aerogel 51 3.2.1 nhăh ng c a t l r n ậ l ng lên kh n ngăh p ph 51 3.2.2 nhăh ng c aăđi u ki n ho t hóa lên q trình h p ph 53 3.2.3 nhăh ng c a th i gian h p ph lên trình h p ph 56 3.2.4 nhăh ng c a n ngăđ banăđ u lên kh n ngăh p ph 63 CH NG K T LU NăVÀă XU T .71 4.1 K t lu n 71 4.2 xu t 71 TÀI LI U THAM KH O 72 vii DANH M C HÌNH Hình 1.1 Q trình h p ph v t lỦ 23 Hình 1.2 N m lo i đ ng h p ph theo Brunauer 25 Hình 1.3 D ng đ th đ Hình 1.4 ng h p ph đ ng nhi t BET 27 ng đ ng nhi t h p ph BET 28 Hình 2.1: Quy trình t ng h p cellulose aerogel 29 Hình 2.2 S đ quy trình than hóa ho t hóa .31 Hình 2.3 ng làm vi c chu n c a Methylen Blue Hình 2.4 ng làm vi c chu n c a Cu2+ b b c sóng 664 nm 33 c sóng 550 nm 35 Hình 2.5: Máy đo ph h p ph phân t UV-vis SP-2000UV…………………… 37 Hình 2.6: Thi t b đo ph h ng ngo i bi n đ i Fourier (Model: Alpha II)……… 38 Hình 2.7: Thi t b FE-SEM Tescan Mira 3…………………………………… .39 Hình 2.8: Thi t b BET 201A………………………………………………………40 Hình 3.1 nh SEM c a CA (a), C (b), CCACO2(c) CCAKOH (d) 41 Hình 3.2 Ph EDX c a CA (a), C (b), CCACO2(c) CCAKOH (d) 42 Hình 3.3 nh SEM c a CAT(a), CCAKOH 0.5(b) CCAKOH 2(c) 43 Hình 3.4 nh SEM c a CAT(a), CCACO2 100(b) CCACO2 400(c) 44 Hình 3.5 t=10 (d), nh SEM c a CCAKOH t=0.5(a), CCAKOH t=1.5(b), CCAKOH t=2(c), CCACO2 CCACO2 t=15 (e), CCACO2 t=30 (f) 45 Hình 3.6 th th hi n s phân b kích th c l x p c a carbon cellulose aerogel .47 Hình 3.7 Ph FTIR c a CA (a), C (b), CCACO2(c) CCAKOH (d) 48 Hình 3.8: Hi u su t h p ph theo kh i l Hình 3.9: Dung l Hình 3.10: Dung l ng h p ph theo kh i l ng 50 ng .50 ng h p ph c a m u ho t hóa hóa h c th i gian ho t hóa khác nhau……………… 51 Hình 3.11: Dung l ng h p ph c a m u ho t hóa v t lý th i gian ho t hóa khác 51 viii B ng 3.5 H ng s đ ng nhi t Langmuir, Freundlich, trình h p ph MB Langmuir Ho tăhóaăv tălỦ Ho tăhóaăhóaăh c Than hóa T b ng 3.5, d Freundlich RL qmax (mg/g) R2 n kF R2 0.058-0.30 250 0.9984 1.60 6.57 0.7625 0.057-0.30 263 0.9997 1.66 8.19 0.7730 0.076-0.37 166 0.9988 2.21 11.58 0.8063 li u th c nghi m c a trinh h p ph thích h p v i mơ hình đ ng nhi t Langmuir h n so v i mơ hình đ ng nhi t Freundlich i u th hi n tính ch t đ ng nh t c a b m t carbon cellulose aerogel m i phân t methylene blue b m t h p ph có n ng l ng h p ph b ng T giá tr RL cho th y carbon cellulose aerogel ch t o đ c thích h p đ h p ph dung d ch methylene blue giá tr RL n m kho ng t đ n K t qu c ng cho th y s hình thành l p ph đ n l p c a phân t methylene blue b m t c a carbon aerogel Theo lỦ thuy t qm đ c tính tốn t mơ hình Langmuir, carbon aerogel có kh n ng h p ph t i đa 263 mg/g đ i v i m u đ đ iv im uđ th y đ c ho t hóa hóa h c, 250 mg/g c ho t hóa v t lỦ 166 mg/g đ i v i m u than hóa k t qu cho c dung l ng h p ph c a carbon cellulose aerogel t ng lên đáng k so sánh v i k t qu h p ph đ t đ c c đ i v i cellulose aerogel ch a ho t hóa (23.20 mg/g) [111] K t qu h p ph methylene blue đ t đ khác đ đ c t v t li u quy trình c t ng h p đ so sánh v i k t qu đ t đ c t nghiên c u th hi n b ng 3.6 B ng 3.6 Kh n ng h p ph methylene blue t i đa t nguyên li u khác Nguyên li u Tác nhân ho t hóa Kh n ng h p ph (mg/g) aerogels t Carboxymethyl KOH 249.6 [57] Than ho t tính t b cà phê ZnCl2 188.7 [122] Than ho t tính t r m (NH4)3PO4 129.5 [123] KOH 263 Carbon cellulose Carbon cellulose aerogels t s i d a s i cotton 66 Carbon cellulose aerogels t s i d a s i cotton CO2 250 Quá trình h p ph Cu2+ K t qu thí nghi m h p ph Cu2+ n ng đ khác đ c trình bày hình 3.24 Hình 3.24 th th hi n dung l Hình 3.24 cho th y đ ng h p ph Cu2+ n ng đ khác c, m u cellulose aerogel không h p ph Cu2+ b t kì n ng đ i u th hi n r ng b m t c a cellulose aerogel khơng có n tích âm c ng nh n th liên k t đ có th t o thành q trình h p ph hóa h c v i Cu2+ i v i m u ho t hóa, t ng t q trình h p ph methylene blue, t ng n ng đ Cu2+ ban đ u d n đ n t ng kh n ng h p ph V i vi c t ng n ng đ ban đ u t 20 đ n 150mg/L, kh n ng h p ph t ng t 23.31 lên 60.69 mg/g đ i v i m u ho t hóa v t lý, t 25.73 lên 66.78 mg/g đ i v i m u ho t hóa hóa h c S h ng c a n ng đ đ u có th đ c gi i thích nh sau: nh n ng đ ion kim lo i ban đ u th p, có đ v trí h p ph đ h p ph ion kim lo i n ng Do đó, s h p 67 ph không ph thu c vào n ng đ ion kim lo i ban đ u Tuy nhiên, h n, v trí h p ph c a carbon cellulose đư đ t ng ch m có xu h ng n m ngang, s l c n đ y, dung l n ng đ cao ng h p ph ng ion kim lo i n ng t ng đ i cao h n so v i s s n có c a v trí h p ph [120,121] K t qu c ng cho th y r ng m c dù cân b ng h p ph t ng lên n ng đ ion kim lo i t ng, m c đ t ng không t l v i n ng đ ion kim lo i ban đ u, t c n ng đ ion kim lo i c a ion kim lo i t ng lên hai l n không d n đ n t ng g p đôi kh n ng h p ph cân b ng Kh o sát d ng đ Cu2+ k t qu đ Hình 3.25 ng đ ng nhi t Freundlich Langmuir trình h p ph c th hi n b ng 3.7 hình 3.25, 3.26 th h p ph đ ng nhi t theo Langmuir, trình h p ph Cu2+ 68 Hình 3.26 th h p ph đ ng nhi t theo Freundlich, trình h p ph Cu2+ B ng 3.7 H ng s đ ng nhi t Langmuir, Freundlich, trình h p ph Cu2+ Langmuir Ho tăhóaăv tălỦ Ho tăhóaăhóaăh c Freundlich kL qmax (mg/g) RL2 n 0.030-0.186 62.11 0.9952 3.27 16.28 0.8793 0.040-0.225 69.44 0.9891 4.27 23.92 0.9618 kF RF2 T b ng 3.7, d li u th c nghi m c a q trình h p ph Cu2+ thích h p v i mơ hình đ ng nhi t Langmuir h n so v i mơ hình đ ng nhi t Freundlich i u th hi n tính ch t đ ng nh t c a b m t carbon cellulose aerogel m i ion Cu2+ b m t h p ph có n ng l ng h p ph b ng T giá tr RL cho th y carbon cellulose aerogel ch t o đ c c ng thích h p đ h p ph kim lo i Cu2+vì giá tr RL n m kho ng t đ n K t qu c ng cho th y s hình thành l p ph đ n l p c a ion Cu2+ Theo lý thuy t qm đ b m t c a carbon aerogel c tính tốn t mơ hình Langmuir, carbon aerogel có kh n ng h p ph Cu2+ t i đa 69.44 mg/g đ i v i m u đ 62.11 mg/g đ i v i m u đ c ho t hóa hóa h c c ho t hóa v t lý M t s k t qu h p ph Cu2+ đ t 69 đ c t v t li u quy trình khác đ đ tđ c t ng h p đ so sánh v i k t qu c t nghiên c u th hi n b ng 3.8 B ng 3.8 Kh n ng h p ph Cu2+ t i đa t nguyên li u khác Nguyên li u Tác nhân ho t hóa Kh n ng h p ph (mg/g) Carbon aerogels ph N Tác nhân nhi t đ 19.06 [124] 1300 oC Ho t hóa h i n c t i nhi t đ 900oC, Than ho t tính t h t oliu 25.38 [125] t=3.5h Carbon cellulose aerogels t s i d a s i cotton KOH 69.44 CO2 62.11 Carbon cellulose aerogels t s i d a s i cotton T đó, có th th y đ c q trình ho t hóa nh h ng l n đ n c u trúc c a v t li u Ho t hóa v i tác nhân v t lỦ ho c hóa h c y u t quan tr ng tác đ ng đ n ch t l ng c a carbon cellulose aerogel 70 CH NG K T LU N VÀ XU T 4.1 K t lu n T k t qu nghiên c u c a đ tài, có th rút m t s k t lu n nh sau: - V i nguyên li u s i d a s i bông, carbon cellulose aerogel đ c t ng h p s d ng trình ho t hóa hóa h c mang l i hi u qu h p ph cao h n nhi u so v i cellulose aerogel Do đó, đ tài nghiên c u t p trung vào giai đo n ho t hóa - Trong giai đo n ho t hóa th i gian tác nhân ho t hóa đ u nh h ch t l ng s n ph m u ki n nhi t đ 800°C, th i gian 1.5h t l KOH/C = đ i v i q trình ho t hóa hóa h c và l u l ng đ n u ki n nhi t đ 800°C, th i gian 15 phút ng CO2 100ml/phút đ i v i trình ho t hóa v t lý carbon cellulose aerogel có kh n ng h p ph methylene blue cao nh t - Carbon cellulose aerogel t ng h p đ c có SBET = 970.20 m2/g đ i v i m u ho t hóa hóa h c SBET =886.58 m2/g đ i v i m u ho t hóa v t lý Thích h p đ làm v t li u h p ph m t s ch t h u c nh methylene blue m t s kim lo i n ng nh Cu2+ K t qu h p ph c methylene blue Cu2+ phù h p v i h p ph đ ng nhi t Langmuir Kh n ng h p ph t i đa t ng ng 263 mg/g 250 mg/g đ i v i methylene blue, 69.44 mg/g 62.11 mg/g đ i v i Cu2+ 4.2 xu t - C n ti p t c nghiên c u, tính tốn nh m t i u c chi phí quy trình ho t hóa ng th i nghiên c u, s d ng tác nhân ho t hóa khác ngồi KOH CO2 - C n ph i nghiên c u đánh giá m t s ch tiêu đ m r ng vi c ng d ng carbon cellulose aerogel t ng h p đ c t s i d a s i - Các k t qu nghiên c u cho th y carbon cellulose aerogel t ng h p đ ct s i d a s i bơng có th s d ng nh v t li u h p ph giá thành th p, hi u qu thân thi n v i mơi tr ng Vì v y, c n đ c ti p t c nghiên c u ng d ng quy mô l n 71 TÀI LI U THAM KH O [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] D Klemm et al., "Cellulose: fascinating biopolymer and sustainable raw material," Angewandte chemie international edition, vol 44, pp 3358-3393, 2005 C Tsioptsias et al., "Development of micro-and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO 2," Green Chemistry, vol 10, pp 965-971, 2008 Y Habibi et al., "Cellulose nanocrystals: chemistry, self-assembly, and applications," Chemical reviews, vol 110, pp 3479-3500, 2010 S Wang et al., "Recent advances in regenerated cellulose materials," Progress in Polymer Science, vol 53, pp 169-206, 2016 S S Kistler, "Coherent expanded aerogels and jellies," Nature, vol 127, pp 741-741, 1931 S S Kistler, "Coherent expanded-aerogels," The Journal of Physical Chemistry, vol 36, pp 52-64, 2002 N Leventis et al., "Nanoengineering strong silica aerogels," Nano letters, vol 2, pp 957-960, 2002 O Masson et al., "Size and shape characterization of TiO2 aerogel nanocrystals," Nanostructured materials, vol 7, pp 725-731, 1996 T F Baumann et al., "Facile synthesis of a crystalline, high surface area SnO2 aerogel," Advanced Materials, vol 17, pp 1546-1548, 2005 D Le et al., "High surface area V O aerogel intercalation electrodes," Journal of the Electrochemical Society, vol 143, pp 2099, 1996 A Corrias et al., "Preparation and characterization of FeCo-Al2O3 and Al2O3 aerogels," Journal of sol-gel science and technology, vol 31, pp 8386, 2004 S A Al Muhtaseb and J A Ritter, "Preparation and properties of resorcinolậformaldehyde organic and carbon gels," Advanced materials, vol 15, pp 101-114, 2003 J Yamashita et al., "Organic and carbon aerogels derived from poly (vinyl chloride)," Carbon, vol 41, pp 285-294, 2003 C Daniel et al., "Syndiotactic polystyrene aerogels: adsorption in amorphous pores and absorption in crystalline nanocavities," Chemistry of Materials, vol 20, pp 577-582, 2008 H Guo et al., "Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength," ACS applied materials & interfaces, vol 4, pp 5422-5429, 2012 C A García-González et al., "Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems," Carbohydrate Polymers, vol 86, pp 1425-1438, 2011 E G Deze et al., "Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and 72 [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] Cd2+ ion sorption," Chemical engineering journal, vol 209, pp 537-546, 2012 M Betz et al., "Preparation of novel whey protein-based aerogels as drug carriers for life science applications," The Journal of Supercritical Fluids, vol 72, pp 111-119, 2012 X Chang et al., "Chitosan-based aerogels with high adsorption performance," The Journal of Physical Chemistry B, vol 112, pp 7721-7725, 2008 A Salam et al., "Crosslinked hemicellulose citrateậchitosan aerogel foams," Carbohydrate Polymers, vol 84, pp 1221-1229, 2011 D Fairén-Jiménez et al., "Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts," Carbon, vol 44, pp 2301-2307, 2006 A E Aliev et al., "Giant-stroke, superelastic carbon nanotube aerogel muscles," science, vol 323, pp 1575-1578, 2009 M A Worsley et al., "Synthesis of graphene aerogel with high electrical conductivity," Journal of the American Chemical Society, vol 132, pp 14067-14069, 2010 L.-Y Long et al., "Cellulose aerogels: Synthesis, applications, and prospects," Polymers, vol 10, pp 623, 2018 M Ahmadi et al., "Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil," Food chemistry, vol 196, pp 1016-1022, 2016 B Seantier et al., "Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties," Carbohydrate polymers, vol 138, pp 335-348, 2016 B N Nguyen et al., "Polyimide cellulose nanocrystal composite aerogels," Macromolecules, vol 49, pp 1692-1703, 2016 A Allahbakhsh and A R Bahramian, "Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications," Nanoscale, vol 7, pp 14139-14158, 2015 M Enterría and J Figueiredo, "Nanostructured mesoporous carbons: Tuning texture and surface chemistry," Carbon, vol 108, pp 79-102, 2016 Z Tang et al., "Polyaniline-coated activated carbon aerogel/sulfur composite for high-performance lithium-sulfur battery," Nanoscale research letters, vol 12, pp 1-9, 2017 M Canal-Rodríguez et al., "Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors," Electrochimica Acta, vol 276, pp 28-36, 2018 H Zhuo et al., "Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture," Industrial Crops and Products, vol 87, pp 229-235, 2016 S Mondal, "Preparation, properties and applications of nanocellulosic materials," Carbohydrate polymers, vol 163, pp 301-316, 2017 73 H A Khalil et al., "Production and modification of nanofibrillated cellulose using various mechanical processes: a review," Carbohydrate polymers, vol 99, pp 649-665, 2014 [35] K Abe and H Yano, "Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber," Cellulose, vol 16, pp 1017-1023, 2009 [36] S Iwamoto et al., "Optically transparent composites reinforced with plant fiber-based nanofibers," Applied Physics A, vol 81, pp 1109-1112, 2005 [37] W Chen et al., "Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments," Carbohydrate Polymers, vol 83, pp 1804-1811, 2011 [38] E Qua et al., "Preparation and characterisation of cellulose nanofibres," Journal of Materials Science, vol 46, pp 6029-6045, 2011 [39] T Zimmermann et al., "Cellulose fibrils for polymer reinforcement," Advanced engineering materials, vol 6, pp 754-761, 2004 [40] O Nechyporchuk et al., "Production of cellulose nanofibrils: A review of recent advances," Industrial Crops and Products, vol 93, pp 2-25, 2016 [41] H G de Oliveira Barud et al., "A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose," Carbohydrate Polymers, vol 153, pp 406-420, 2016 [42] K Qiu and A N Netravali, "A review of fabrication and applications of bacterial cellulose based nanocomposites," Polymer Reviews, vol 54, pp 598-626, 2014 [43] P R Chawla et al., "Microbial cellulose: fermentative production and applications," Food Technology & Biotechnology, vol 47, 2009 [44] H Sai et al., "Flexible aerogels with interpenetrating network structure of bacterial celluloseậsilica composite from sodium silicate precursor via freeze drying process," Rsc Advances, vol 4, pp 30453-30461, 2014 [45] B Lindman et al., "On the mechanism of dissolution of cellulose," Journal of molecular liquids, vol 156, pp 76-81, 2010 [46] B Medronho and B Lindman, "Brief overview on cellulose dissolution/regeneration interactions and mechanisms," Advances in colloid and interface science, vol 222, pp 502-508, 2015 [47] B Medronho and B Lindman, "Competing forces during cellulose dissolution: From solvents to mechanisms," Current Opinion in Colloid & Interface Science, vol 19, pp 32-40, 2014 [48] B Xiong et al., "Dissolution of cellulose in aqueous NaOH/urea solution: role of urea," Cellulose, vol 21, pp 1183-1192, 2014 [49] L Zhang et al., "Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution," Journal of Polymer Science Part B: Polymer Physics, vol 40, pp 1521-1529, 2002 [50] Z Wang et al., "Dissolution of ethylenediamine pretreated pulp with high lignin content in LiCl/DMSO without milling," Journal of Wood Chemistry and Technology, vol 30, pp 219-229, 2010 [34] 74 [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] Z Wang et al., "Dissolution of beech and spruce milled woods in LiCl/DMSO," Journal of agricultural and food chemistry, vol 57, pp 61676170, 2009 D Ishii et al., "Investigation of the Structure of Cellulose in LiCl/DMAc Solution and Its Gelation Behavior by Small Angle X Ray Scattering Measurements," Macromolecular bioscience, vol 6, pp 293-300, 2006 Y Nishio and N Hirose, "Cellulose/poly (2-hydroxyethyl methacrylate) composites prepared via solution coagulation and subsequent bulk polymerization," Polymer, vol 33, pp 1519-1524, 1992 S Zhu et al., "Dissolution of cellulose with ionic liquids and its application: a mini-review," Green Chemistry, vol 8, pp 325-327, 2006 Y Fang et al., "Synthesis and characterization of cellulose triacetate aerogels with ultralow densities," RSC advances, vol 6, pp 54054-54059, 2016 F Fischer et al., "Cellulose-based aerogels," Polymer, vol 47, pp 76367645, 2006 M Yu et al., "KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption," Chemical engineering journal, vol 310, pp 300-306, 2017 W Surapolchai and D A Schiraldi, "The effects of physical and chemical interactions in the formation of cellulose aerogels," Polymer bulletin, vol 65, pp 951-960, 2010 B F Martins et al., "Hydroxypropyl methylcellulose based aerogels: Synthesis, characterization and application as adsorbents for wastewater pollutants," Carbohydrate polymers, vol 155, pp 173-181, 2017 N Hüsing and U Schubert, "Aerogels—airy materials: chemistry, structure, and properties," Angewandte Chemie International Edition, vol 37, pp 2245, 1998 J L Gurav et al., "Silica aerogel: synthesis and applications," Journal of Nanomaterials, vol 2010, 2010 H Gesser and P Goswami, "Aerogels and related porous materials," Chemical Reviews, vol 89, pp 765-788, 1989 R Gavillon and T Budtova, "Aerocellulose: new highly porous cellulose prepared from cellulose− NaOH aqueous solutions," Biomacromolecules, vol 9, pp 269-277, 2008 O Biganska and P Navard, "Morphology of cellulose objects regenerated from celluloseậN-methylmorpholine N-oxideậwater solutions," Cellulose, vol 16, pp 179-188, 2009 A Sannino et al., "Biodegradable cellulose-based hydrogels: design and applications," Materials, vol 2, pp 353-373, 2009 X Shen et al., "Hydrogels based on cellulose and chitin: fabrication, properties, and applications," Green chemistry, vol 18, pp 53-75, 2016 75 [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] X Wang et al., "Tert-butyl alcohol used to fabricate nano-cellulose aerogels via freeze-drying technology," Materials research express, vol 4, pp 065006, 2017 X Wang et al., "Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology," Materials Letters, vol 183, pp 179-182, 2016 J Zhang et al., "Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels," The Journal of Physical Chemistry C, vol 116, pp 8063-8068, 2012 R Sescousse et al., "Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology," Cellulose, vol 17, pp 11371146, 2010 N Buchtová and T Budtova, "Cellulose aero-, cryo-and xerogels: Towards understanding of morphology control," Cellulose, vol 23, pp 2585-2595, 2016 F Liebner et al., "Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra lightweight cellulosic aerogels," Macromolecular bioscience, vol 10, pp 349-352, 2010 Y Lu et al., "Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezingậthawing in ionic liquid solution," Journal of Materials Chemistry, vol 22, pp 13548-13557, 2012 N Pircher et al., "Impact of selected solvent systems on the pore and solid structure of cellulose aerogels," Cellulose, vol 23, pp 1949-1966, 2016 R Sescousse et al., "Aerocellulose from celluloseậionic liquid solutions: preparation, properties and comparison with celluloseậNaOH and celluloseậ NMMO routes," Carbohydrate polymers, vol 83, pp 1766-1774, 2011 L Heath and W Thielemans, "Cellulose nanowhisker aerogels," Green Chemistry, vol 12, pp 1448-1453, 2010 J Innerlohinger et al., "Aerocellulose: aerogels and aerogel like materials made from cellulose," in Macromolecular Symposia, 2006, vol 244, no 1, pp 126-135: Wiley Online Library M Schestakow et al., "Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt," Carbohydrate polymers, vol 137, pp 642-649, 2016 H Jin et al., "Nanofibrillar cellulose aerogels," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 240, pp 63-67, 2004 F Jiang and Y.-L Hsieh, "Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezingậthawing," Journal of Materials Chemistry A, vol 2, pp 350359, 2014 X Zhang et al., "The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel," Journal of wood science, vol 61, pp 595-601, 2015 76 A N Nakagaito et al., "Cellulose nanofiber aerogel production and applications," Journal of Reinforced Plastics and Composites, vol 32, pp 1547-1552, 2013 [83] H Cai et al., "Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold," Biomacromolecules, vol 15, pp 2540-2547, 2014 [84] C Jiménez-Saelices et al., "Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties," Carbohydrate polymers, vol 157, pp 105-113, 2017 [85] F Liebner et al., "Cellulose aerogels: Highly porous, ultra-lightweight materials, " Holzforschung, vol 62, pp 129ậ135, 2008 [86] J Cai et al., "Cellulose aerogels from aqueous alkali hydroxideậurea solution," ChemSusChem: Chemistry & Sustainability Energy & Materials, vol 1, pp 149-154, 2008 [87] M Beaumont et al., "Surface properties and porosity of highly porous,nanostructured cellulose II particles," Cellulose, vol 24, pp 435-440, 2017 [88] M Anas et al., "Thermodynamics of adsorption of carbon dioxide on various aerogels," Journal of CO2 Utilization, vol 21, pp 82-88, 2017 [89] K V T Diem et al., "Nghiên c u c i ti n q trình than hóa quy trình u ch than ho t tính t v h t u," T p chí Khoa h c Tr ng ih c C n Th , vol 42, pp 118-126, 2016 [90] T H Bùi, "Nghiên c u ch t o than ho t tính t v tr u b ng ph ng pháp oxi hóa ng d ng làm ch t h p ph x lỦ n c th i," khóa lu n t t nghi p, i h c Dân l p H i Phòng, 2016 [91] J.-H Lee and S.-J Park, "Recent advances in preparations and applications of carbon aerogels: A review," Carbon, vol 163, pp 1-18, 2020 [92] D M Smith et al., "Aerogel-based thermal insulation," Journal of noncrystalline solids, vol 225, pp 254-259, 1998 [93] Y.-T Wang et al., "Efficient approach to improving the flame retardancy of poly (vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate," ACS Applied Materials & Interfaces, vol 7, pp 1780-1786, 2015 [94] Y Hanzawa et al., "Structural changes in carbon aerogels with high temperature treatment," Carbon, vol 40, pp 575-581, 2002 [95] L Hu et al., "Carbon aerogel for insulation applications: a review," International Journal of Thermophysics, vol 40, pp 1-25, 2019 [96] J.-J Zhao et al., "Effects of solidậgas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels," Journal of Nanoparticle Research, vol 14, pp 1-15, 2012 [97] J.-J Zhao et al., "Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures," Journal of Physics D: Applied Physics, vol 46, pp 015304, 2012 [82] 77 L Aditya et al., "A review on insulation materials for energy conservation in buildings," Renewable and sustainable energy reviews, vol 73, pp 13521365, 2017 [99] A Eftekhari, "Materials today energy," Mater Today, vol 5, pp 37-57, 2017 [100] S Yun et al., "Three-dimensionally macroporous, Si and N-incorporated graphene aerogels for gas adsorbents," Materials Express, vol 5, pp 463469, 2015 [101] D Wu et al., "Structure and adsorption properties of activated carbon aerogels," Journal of applied polymer science, vol 99, pp 2263-2267, 2006 [102] F J Maldonado-Hódar et al., "Reversible toluene adsorption on monolithic carbon aerogels," Journal of Hazardous Materials, vol 148, pp 548-552, 2007 [103] D Fairen-Jimenez et al., "Surface area and microporosity of carbon aerogels from gas adsorption and small-and wide-angle X-ray scattering measurements," The Journal of Physical Chemistry B, vol 110, pp 86818688, 2006 [104] L Fu et al., "Preparation of nano-porous carbon-silica composites and its adsorption capacity to volatile organic compounds," Processes, vol 8, pp 372, 2020 [105] A K Meena et al., "Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent," Journal of hazardous materials, vol 122, pp 161-170, 2005 [106] K Li et al., "Ultrahigh-surface-area activated carbon aerogels derived from glucose for high-performance organic pollutants adsorption," Journal of colloid and interface science, vol 546, pp 333-343, 2019 [107] G Gan et al., "Carbon Aerogels for Environmental Clean Up,"European journal of inorganic chemistry, vol 2019, pp 3126-3141, 2019 [108] M H Khiêm, Hóa Keo i h c Qu c Gia TPHCM, 2008 [109] Y.-J Zhang et al., "Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste," Applied Surface Science, vol 315, pp 279-286, 2014 [110] J Fan et al., "Adsorption of 2, 4, 6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife," Desalination, vol 267, pp 139-146, 2011 [111] P V Vu et al., "A Novel Application of Cellulose Aerogel Composites From Pineapple Leaf Fibers And Cotton Waste: Removal of Dyes and Oil In Wastewater," Journal of Porous Materials, vol 29, pp 1137ậ1147, 2021 [112] D Lv et al., "Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal," International Journal of Biological Macromolecules, vol 148, pp 979-987, 2020 [98] 78 [113] Y Wang et al., "Removal of methylene blue from water by copper alginate/activated carbon aerogel: equilibrium, kinetic, and thermodynamic studies," Journal of Polymers and the Environment, vol 28, pp 200-210, 2020 [114] L Chen et al., "High performance agar/graphene oxide composite aerogel for methylene blue removal," Carbohydrate polymers, vol 155, pp 345-353, 2017 [115] W Yuan et al., "Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment," Results in physics, vol 7, pp 2919-2924, 2017 [116] R Aravindhan et al., "Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 299, pp 232-238, 2007 [117] W Tongpoothorn et al., "Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties," Chemical engineering research and design, vol 89, pp 335-340, 2011 [118] Z Li et al., "Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method," Journal of Molecular Liquids, vol 242, pp 747-756, 2017 [119] K Zhou et al., "Kinetic, isotherm and thermodynamic studies for removal of methylene blue using -cyclodextrin/activated carbon aerogels," Journal of Polymers and the Environment, vol 26, pp 3362-3370, 2018 [120] J Li et al., "A novel carbon aerogel prepared for adsorption of copper (II) ion in water," Journal of Porous Materials, vol 24, pp 1575-1580, 2017 [121] X Mi et al., "Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions," Carbon, vol 50, pp 4856-4864, 2012 [122] S S Brum et al., "Preparation and characterization of activated carbon produced from coffee waste," Química Nova, vol 31, pp 1048-1052, 2008 [123] P Gao et al., "Preparation and characterization of activated carbon produced from rice straw by (NH4) 2HPO4 activation," Bioresource technology, vol 102, pp 3645-3648, 2011 [124] P Veselá and V Slovák, "N-doped carbon xerogels prepared by ammonia assisted pyrolysis: Surface characterisation, thermal properties and adsorption ability for heavy metal ions," Journal of Analytical and Applied Pyrolysis, vol 109, pp 266-271, 2014 [125] L Ma et al., "Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions," Chemical Engineering Journal, vol 395, pp 125216, 2020 79 PH N LÝ L CH TRÍCH NGANG H tên: Tr n ình Lâm Ngày, tháng, n m sinh: 16/05/1995 a ch liên l c: p 2- Phú L c- Tân Phú- N i sinh: Qu ng Ngãi ng Nai QUÁăTRỊNHă ÀOăT O 8/2013- 4/2018: H c đ i h c t i đ i h c Bách Khoa9/2019- Nay: H c cao h c t i đ i h c Bách Khoa- i h c Qu c Gia TPHCM i h c Qu c Gia TPHCM Q TRÌNH CƠNG TÁC 6/2018- 06/2020: Nhân viên nghiên c u phát tri n s n ph m t i công ty TNHH Hyosung Vi t Nam 08/2020- Nay: Nhân viên phòng k thu t t i nhà máy Hóa ch t Biên Hịa 80