Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 136 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
136
Dung lượng
4,38 MB
Nội dung
MỤC LỤC DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT i DANH MỤC BẢNG iii DANH MỤC HÌNH VÀ ĐỒ THỊ .v MỞ ĐẦU .1 CHƯƠNG TỔNG QUAN .3 1.1 Quá trình hấp phụ loại bỏ chất ô nhiễm nước 1.1.1 Các chất ô nhiễm chủ yếu cần ưu tiên xử lý nước 1.1.2 Các công nghệ phổ biến để loại bỏ chất ô nhiễm 1.1.3 Quá trình hấp phụ để loại bỏ chất nhiễm nước 10 1.2 Vật liệu hấp phụ nano, nanocomposite xử lý nước 14 1.2.1 Vật liệu nano với vai trò chất hấp phụ nano xử lý nước 15 1.2.2 Vật liệu hấp phụ nanocomposite xử lý nước 17 1.3 Những vấn đề liên quan trực tiếp đến nội dung nghiên cứu luận án 20 1.3.1 Khoáng sét bentonite - vật liệu nguồn chế tạo nanocomposite 20 1.3.2 Phương pháp tổng hợp nanocomposite Fe3O4/bentonite 23 1.3.3 Tình hình nghiên cứu chế tạo ứng dụng FB xử lý nước 25 1.3.4 Nano sắt hóa trị khơng (nZVI) oxit phức hợp Fe-Mn .28 1.3.5 Hydrogel nanocomposite sở chitosan .31 1.3.6 Polyme in dấu phân tử ứng dụng xử lý nước nước thải 34 CHƯƠNG THỰC NGHIỆM 37 2.1 Tổng hợp vật liệu 37 2.1.1 Nguyên liệu, hóa chất 37 2.1.2 Tổng hợp vật liệu FB .37 2.1.3 Tổng hợp vật liệu IFMB 39 2.1.4 Tổng hợp vật liệu CAB/CGA 42 2.2 Nghiên cứu khả hấp phụ vật liệu 44 2.2.1 Khả hấp phụ vật liệu FB 44 2.2.2 Khả hấp phụ vật liệu IFMB – Hấp phụ RY-145 .46 2.2.3 Khả hấp phụ vật liệu CAB/CGA – Hấp phụ amoni 47 2.3 Nghiên cứu khả tái sử dụng vật liệu 47 2.4 Các phương pháp xác định đặc trưng vật liệu phân tích đánh giá kết hấp phụ .48 2.4.1 Nhiễu xạ tia X (XRD) 48 2.4.2 Phổ hồng ngoại (FTIR) 48 2.4.3 Hiển vi điện tử quét phát xạ trường (FE-SEM) .49 2.4.4 Hiển vi điện tử truyền qua (TEM) 49 2.4.5 Tán xạ ánh sáng .49 2.4.6 Đẳng nhiệt hấp phụ khí nitơ 49 2.4.7 Phổ tán sắc lượng tia X (EDX) .49 2.4.8 Phương pháp đo đường cong từ hoá 49 2.4.9 Phân tích nhiệt (TG-DTA) 49 2.4.10 Phương pháp dịch chuyển pH (pH drift method) 49 2.4.11 Xác định độ trương nở vật liệu CAB/CGA 50 2.4.12 Hấp thụ nguyên tử AAS .50 2.4.13 Phương pháp đo phổ UV-Vis .50 2.4.14 Phương pháp so màu xác định nồng độ amoni 51 2.4.15 Phương pháp phân tích xác định tiêu COD 51 2.4.16 Phương pháp phân tích xác định tiêu TOC 51 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 52 3.1 Vật liệu FB .52 3.1.1 Nghiên cứu lựa chọn thành phần FB chế độ nung 52 3.1.2 Các đặc trưng vật liệu 53 3.1.3 Khả hấp phụ vật liệu 61 3.2 Vật liệu IFMB 74 3.2.1 Tối ưu hóa thành phần IFMB 74 3.2.2 Các đặc trưng vật liệu 80 3.2.3 Khả hấp phụ thuốc nhuộm RY-145 IFMB 83 3.2.4 Tái sử dụng vật liệu 89 3.3 Vật liệu CAB/CGA 91 3.3.1 Tổng hợp vật liệu 91 3.3.2 Các đặc trưng vật liệu CAB/CGA 98 3.3.3 Khả hấp phụ amoni CAB/CGA 101 3.3.4 Tái sử dụng vật liệu 106 KẾT LUẬN .108 NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN .110 CÁC CƠNG TRÌNH CƠNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN 111 TÀI LIỆU THAM KHẢO .112 i DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT AA Acrylic axit AAS Phương pháp quang phổ hấp thụ ngun tử AOPs Q trình oxy hóa nâng cao BOD Nhu cầu oxy sinh học CAB CTS-g - poly(acrylic acid)/bentonite CAB/CGA Hydrogel composite mạng xen kẽ CTS-g-poly(acrylic acid)/bentonite với CTS-GA COD Nhu cầu oxy hóa học CTS Chitosan FB Nanocomposite Fe3O4/bentonite FMB Composite oxit phức hợp Fe – Mn bentonite FMO Oxit phức hợp Fe - Mn GA Glutaraldehyde HG Hydrogel HC Hydrogel composite HM Kim loại nặng IFMB Vật liệu composite nZVI/oxit phức hợp (Fe-Mn)/bentonite KPS Kali persulphate MBA N,N’-methylene bisacrylamide MIPs Polyme in dấu phân tử MMT Montmorillonite MNCs Nanocomposite kim loại MONCs Nanocomposite oxit kim loại MONPs Nano oxit kim loại NC Nanocomposite NOCs Chất hữu tự nhiên nZVI Vật liệu nano sắt không nZVI/B Vật liệu nano sắt không bentonite PAA Polyacrylic axit PEG Polyethylene glycol ii PNCs Polyme nanocomposite PZC Điểm điện tích khơng RSM Phương pháp đáp ứng bề mặt SOCs Chất hữu tổng hợp TB Tinh bột TOC Tổng lượng carbon hữu iii DANH MỤC BẢNG Trang Bảng 1.1: Ưu, nhược điểm kỹ thuật sử dụng để loại bỏ chất ô nhiễm Bảng 1.2 Một số nghiên cứu tổng hợp FB, chất gây nhiễm mục tiêu 27 q trình loại bỏ chúng Bảng 2.1 Nồng độ dung dịch tiền chất tổng hợp IFMB 40 Bảng 2.2 Điều kiện thí nghiệm xác định thơng số quy trình tổng hợp CAB 44 Bảng 3.1 Hiệu suất hấp phụ As(V) mẫu vật liệu có thành phần khác 53 Bảng 3.2 Hiệu suất hấp phụ As(V) mẫu vật liệu nung nhiệt 53 độ khác Bảng 3.3 Độ bền hóa học mẫu vật liệu 53 Bảng 3.4 Kết phân tích EDX mẫu FB75-500 58 Bảng 3.5 Diện tích bề mặt số mẫu vật liệu 58 Bảng 3.6 Số liệu đẳng nhiệt hấp phụ As(V) As(III) FB100-80 64 Bảng 3.7 Số liệu đẳng nhiệt hấp phụ As(III) As(V) FB75-500 64 Bảng 3.8 Dung lượng hấp phụ As cực đại theo Langmuir vật liệu FB 66 Bảng 3.9 Số liệu đẳng nhiệt hấp phụ Pb2+ Cd2+ vật liệu FB thơng số 69 mơ hình đẳng nhiệt hấp phụ Bảng 3.10 So sánh dung lượng hấp phụ Pb2+ Cd2+ số vật liệu 70 Bảng 3.11 So sánh dung lượng hấp phụ RR195 số vật liệu 74 Bảng 3.12 Bảng ma trận thí nghiệm tối ưu hóa 75 Bảng 3.13 Thành phần 15 mẫu IFMB tổng hợp 75 Bảng 3.14 Bảng mã hóa giá trị biến khảo sát 76 Bảng 3.15 Các hệ số phương trình hồi quy 77 Bảng 3.16 Kết kiểm tra tính tương thích mơ hình 80 Bảng 3.17 Diện tích bề mặt riêng bentonite, FMB IFMB 82 Bảng 3.18 Kết phân tích EDX mẫu IFMB 82 Bảng 3.19 Thay đổi pH dung dịch trình hấp phụ RY-145 84 IFMB iv Bảng 3.20 Kết phân tích dung dịch trước sau thí nghiệm 85 Bảng 3.21 Kết nghiên cứu động học hấp phụ RY-145 IFMB 86 Bảng 3.22 Kết nghiên cứu đẳng nhiệt hấp phụ RY-145 RY-195 88 IFMB Bảng 3.23 Các thơng số mơ hình đẳng nhiệt Langmuir Freundlich 88 Bảng 3.24 Hiệu hấp phụ RY-145 số vật liệu 89 Bảng 3.25 Hiệu suất hấp phụ amoni mẫu CAB 91 Bảng 3.26 Các thơng số quan trọng quy trình tổng hợp CAB 92 Bảng 3.27 Hiệu suất hấp phụ amoni mẫu CAB/CGA với lượng NH4Cl 97 khác Bảng 3.28 Kết xác định độ trương nở vật liệu CAB/CGA 101 Bảng 3.29 Các hệ số phương trình động học hấp phụ với Co = 50 mg/l 103 Bảng 3.30 Số liệu thực nghiệm đẳng nhiệt hấp phụ amoni CAB/CGA 104 Bảng 3.31 Các thông số hai mơ hình đẳng nhiệt hấp phụ amoni 105 v DANH MỤC HÌNH VÀ ĐỒ THỊ Trang Hình 1.1 Các công nghệ phổ biến sử dụng để xử lý nước Hình 1.2 Phân loại nanocomposite 18 Hình 1.3 Mơ hình cấu trúc montmorillonite phản ứng trao đổi cation 21 Hình 1.4 Polyme-clay NC, A - Thông thường, B - Xen lớp, C - Tách lớp 22 Hình 1.5 Sơ đồ tổng hợp Fe3O4/bentonite 24 Hình 1.6 Sơ đồ biểu diễn trình sét chống 25 Hình 1.7 Cấu trúc lõi vỏ số chế việc loại bỏ kim loại nặng 29 hợp chất hữu clo nước nZVI Hình 1.8 Sơ đồ cấu trúc hữu (polyme)/vơ (khống sét) HC 32 Hình 1.9 Năm loại liên kết phân tử mẫu MIPs 35 Hình 2.1 Sơ đồ tổng hợp FB 37 Hình 2.2 Sơ đồ tổng hợp IFMB 40 Hình 2.3 Sơ đồ tổng hợp CAB/CGA 42 Hình 2.4 Đường chuẩn xác định nồng độ RR-195 51 Hình 2.5 Đường chuẩn xác định nồng độ RY-145 51 Hình 3.1 Giản đồ XRD mẫu FB100-80 (a), FB75-500 (b) 54 bentonite trình xử lý tách lớp (c) Hình 3.2 Phổ FTIR mẫu FB75-500 56 Hình 3.3 Ảnh SEM mẫu FB100-500 FB75-500 57 Hình 3.4 Ảnh TEM (a) phân bố kích thước hạt (b) mẫu FB75-500 57 Hình 3.5 Đường cong từ hố phụ thuộc từ trường vật liệu FB 59 Hình 3.6 Đồ thị xác định PZC vật liệu FB 60 Hình 3.7 Đường động học hấp phụ As(V) As(III) vật liệu FB 62 Hình 3.8 Đường động học hấp phụ giá trị pH dung dịch khác 63 Hình 3.9 Đẳng nhiệt hấp phụ Langmuir vật liệu FB 65 Hình 3.10 Ảnh hưởng pH đến hiệu suất hấp phụ Pb2+ Cd2+ 67 Hình 3.11 Ảnh hưởng lượng chất hấp phụ đến hiệu suất hấp phụ Pb2+, Cd2+ 67 Hình 3.12 Đường động học hấp phụ với số nồng độ Pb2+ Cd2+ ban đầu 68 khác vi Hình 3.13 Đẳng nhiệt hấp phụ Freundlich Pb2+ Cd2+ vật liệu FB 70 Hình 3.14 Cơng thức cấu tạo RR-195 70 Hình 3.15 Ảnh hưởng pH đến hiệu suất hấp phụ RR-195 71 Hình 3.16 Ảnh hưởng lượng FB đến hiệu suất hấp phụ RR-195 72 Hình 3.17 Ảnh hưởng thời gian tiếp xúc đến hiệu suất hấp phụ RR-195 72 Hình 3.18 Đồ thị động học hấp phụ RR-195 giả bậc bậc hai 73 Hình 3.19 Đường đẳng nhiệt hấp phụ RR-195 vật liệu FB 73 Hình 3.20 Các mặt đáp ứng biểu thị ảnh hưởng hiệu suất hấp phụ vào 78 cặp biến Hình 3.21 Kết tối ưu hóa thành phần vật liệu IFMB 79 Hình 3.22 Giản đồ XRD bentonite, FMB IFMB 80 Hình 3.23 Ảnh SEM bentonite tách lớp, vật liệu FMB IFMB 81 Hình 3.24 Đồ thị xác định PZC IFMB 83 Hình 3.25 Cơng thức cấu tạo cuả RY-145 83 Hình 3.26 Ảnh hưởng pH đến hiệu suất hấp phụ RY-145 IFMB 84 Hình 3.27 Ảnh hưởng thời gian tiếp xúc đến hiệu suất hấp phụ RY-145 86 Hình 3.28 Động học hấp phụ giả bậc bậc cho trình hấp phụ 87 RY-145 IFMB Hình 3.29 Đường đẳng nhiệt hấp phụ Freundlich Langmuir 89 Hình 3.30 Kết nghiên cứu tái sử dụng vật liệu IFMB 90 Hình 3.31 Phổ FTIR bentonite, chitosan, B0, B5, B10, B20 B30 93 Hình 3.32 Phổ FTIR vật liệu với tỉ lệ AA/CTS khác 94 Hình 3.33 Phổ FTIR vật liệu với hàm lượng MBA khác 95 Hình 3.34 Phổ FTIR mẫu t2, t4 t6 96 Hình 3.35 Phổ FTIR mẫu T50, T80 T100 97 Hình 3.36 Phổ FTIR bentonite, chitosan, CAB CAB/CGA 98 Hình 3.37 Ảnh SEM mẫu CAB, CAB/CGA hạt CAB/CGA 98 Hình 3.38 Giản đồ phân tích nhiệt CAB/CGA 100 Hình 3.39 Đồ thị xác định PZC CAB/CGA 101 Hình 3.40 Sự phụ thuộc hiệu suất hấp phụ amoni vào pH dung dịch 102 Hình 3.41 Đường động học hấp phụ (trái) ảnh hưởng thời gian tiếp xúc 102 đến hiệu suất hấp phụ amoni vật liệu (phải) vii Hình 3.42 Động học hấp phụ giả bậc bậc hai với Co = 50 mg/l 103 Hình 3.43 Đẳng nhiệt hấp phụ Freundlich Langmuir 104 Hình 3.44 Đường động học hấp phụ ba vật liệu CAB, CAB/CGA 105 CAB/CGAtt Hình 3.45 Hiệu hấp phụ amoni CAB/CGA chu kỳ liên tiếp 106 112 TÀI LIỆU THAM KHẢO René P Schwarzenbach, Bernhard Wehrli et al., Global Water Pollution and Human Health, Annu Rev Environ Resour, 2010, 35, 109-136 Chang Min Park, Yeomin Yoon et al., Removal of heavy metals from water sources in the developing world using low-cost materials: A review, Chemosphere, 2019, 229, 142e159 M Wołowiec, T Bajda et al., Removal of Heavy Metals and Metalloids fromWater Using DrinkingWater Treatment Residuals as Adsorbents: A Review, Minerals 2019, 9, 487 E Marón, L Castrillon et al., Removal of ammonium from aqueous solutions with volcanic tuff J Hazard Mater., 2006, 137, 1402-1409 J Huang, P.R Teasdale, Removing ammonium from water and wastewater using cost-effective adsorbents: A review J Env Sci., 2018, 63, 174-197 Javier Mateo-Sagasta, Sara Marjani Zadeh, Hugh Turral, Water pollution from agriculture: a global review Executive summary, 2017, FAO and IWMI P A Rezagama, M Hibbaan, Ammonia-Nitrogen (NH3-N) and AmmoniumNitrogen (NH4+-N) Equilibrium on The Process of Removing Nitrogen By Using Tubular Plastic Media, J Mater Environ Sci., 2017, (S), 4915-4922 W Gong, X Meng, X Tang, P Ji, Core-shell MnO2-SiO2 nanorods for catalyzing the removal of dyes from water, Catalysts, 2017, 7, 19 K.A Adegoke, O.S Bello, Dye sequestration using agricultural wastes as adsorbents, Water Resour Indus., 2015, 12, 8–24 10 Tara, N., Asiri et al., A M Nano-engineered adsorbent for removal of dyes from water: A review Current Current Analytical Chemistry, 2020, 16, 14-40 11 Christie, R.M., Environmental aspects of textile dyeing, Wood head Publishing; ISBN: Cambridge, 2017, p 1845691156 12 Sen, T.K.; Afroze, S.; Ang, H., Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinusradiate, Water Air Soil Pollut., 2011, 218, 499-515 13 M T Yagub, H.M Ang et al., Dye and its removal from aqueous solution by adsorption: A review, Adv Colloid Interface Sci., 2014, 209, 172-184 113 14 R Breton, A Boxall "Pharmaceuticals and personal care products in the environment: regulatory drivers and research needs." Qsar & Combinatorial Science, 2003, 22(3), 399-409 15 Fatta, D., et al "Analytical methods for tracing pharmaceutical residues in water and wastewater." TrAC Trends in Analytical Chemistry, 2007, 26.6, 515-533 16 A Hu and A Apblett, Nanotechnology for Water Treatment and Purification Springer, 2014, Vol 22 17 Bredhult, Carolina, Britt-Marie Bäcklin, and Matts Olovsson, Effects of some endocrine disruptors on the proliferation and viability of human endometrial endothelial cells in vitro, Reproductive Toxicology, 2007, 23.4, 550-559 18 Méndez-Arriaga, Jaime Giménez et al., Photocatalytic degradation of nonsteroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation, Water Research, 2008, 42.3, 585-594 19 Ali, T.A Khan, M Asim, Removal of arsenic from water by electrocoagulation and electrodialysis techniques, Sep Purif Rev., 2011, 40, 25–42 20 T.A Saleh, V.K Gupta, Column with CNT/magnesium oxide composite for lead(II) removal from water, Environ Sci Pollut Res., 2012, 19, 1224-1228 21 V.K Gupta, A Nayak, Cadmium removal and recovery from aqueous solutionsby novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem Eng J., 2012, 180, 81–90 22 T.A Saleh, V.K Gupta, Functionalization of tungsten oxide into MWCNT andits application for sunlight-induced degradation of Rhodamine B, J Colloid Interface Sci., 2011, 362, 337–344 23 T.A Saleh, S Agarwal, V.K Gupta, Synthesis of MWCNT/MnO2 and theirapplication for simultaneous oxidation of arsenite and sorption of arsenate, Appl Catal B, 2011, 106, 46–53 24 V.K Gupta, S Agarwal, T.A Saleh, Synthesis and characterization of aluminacoated carbon nanotubes and their application for lead removal, J Hazard Mater., 2011, 185, 17–23 25 Grégorio Crini, Eric Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ Chem Lett., 2019, 17, 145–155 26 Lê văn Cát, Hấp phụ trao đổi ion kỹ thuật xử lý nước, NXB Thống kê 2002, Hà Nội 27 L Wang, Y Hung, N Shammas, Physicochemical treatment processes, 114 Humanapress Inc, 2005, vol 28 Sven Erik Jørgensen, Studies in Environmental Science, Chapter Adsorption, 1979, 5, 61–80 29 D Beekaroo, A Mudhoo, Adsorption of reactive red 158 dye by chemically treated cocos nucifern a Lshell powder, Springer, 2011 30 Florence, D Attwood, Physicochemical principles of pharmacy, 50th edn, Pharmaceutical press, 2011 31 P Hamagai, D Bashyal, H Poudyal, K Ghimire, Studies on functionalization of apple waste for heavy metal treatment, Nepal Journal of Science and Technology, 2009, 10, 135-139 32 Lee EJ, Schwab KJ Deficiencies in drinking water distribution systems in developing countries, Journal of Water and Health, 2005; 3(2),109-127 33 In G Crini, E Lichtfouse (eds.), Green Adsorbents for Pollutant Removal, (Environmental Chemistry for a Sustainable World, 18), Springer, 2018, 23-71 34 Adrian Bonilla-Petriciolet, Elizabeth Reynel-Avila et al., Adsorption Processes for Water Treatment and Purification, Springer, 2017, 30-32 35 M A Al-Ghouti, D A Da'ana, Guidelines for the use and interpretation of adsorption sotherm models: A review, J Hazard Mater, 2020, 393, 122383 36 Chella Santhosh, Amit Bhatnagar et al., Role of nanomaterials in water treatment applications: A review, Chem Eng J., 2016, 306, 1116–1137 37 Ravindra Kumar Gautam, Nanomaterials for Wastewater Remediation, Elsevier Inc, 2016 38 K Yang, B Xing, Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water, Environ Pollut., 2007, 145, 529–537 39 M.B Seymour, Y Li et al., Characterization of carbon nanoonions for heavy metal ion remediation, J Nanopart Res., 2012, 14, 1–13 40 S Wang, C.W Ng, W Wang, Q Li, L Li, A Comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems, J Chem Eng Data, 2012, 57, 1563–1569 41 S M Abdelbasir, A E Shalan, An overview of nanomaterials for industrial wastewater treatment Korean J Chem Eng., 2019, 36(8), 1209–1225 42 C Kastner and A F Thunemann, Catalytic Reduction of 4-Nitrophenol Using Silver Nanoparticles withAdjustable Activity, Langmuir, 2016, 32, 7383–7391 115 43 X.-Y Dong, L.-W Xu et al., Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals, Catal Sci Technol., 2015, 5, 2554–2574 44 Ren, Dianjun; Smith, James A Retention and Transport of Silver Nanoparticles in a Ceramic Porous Medium Used for Point-of-Use Water Treatment, Environ Sci Technol, 2013, 47(8), 3825–3832 45 L Li, P Zhang et al., Synthesis, properties, and environmental applications of nanoscale ironbased materials: a review, Crit Rev Environ Sci Technol., 2006, 36, 405–431 46 X.-Q Li, D.W Elliott, W.-X Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit Rev Solid State Mater Sci., 2006, 31, 111–122 47 K Hristovski, A Baumgardner, P Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J Hazard Mater.,2007, 147, 265–274 48 J.E Van Benschoten, P.J McGarvey et al., Metal removal by soil washing for an iron oxide coated sandy soil, Water Environ Res., 1994, 66, 168–174 49 J.A Coston, C.C Fuller, J.A Davis, Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand, Geochim Cosmochim Acta, 1995, 59, 3535–3547 50 Agrawal, K.K Sahu, Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue, J Hazard Mater., 2006, 137, 915–924 51 Taman R, Ossman ME, Mansour MS, Farag HA, Metal Oxide Nano-particles as an Adsorbent for Removal of Heavy Metals., J Adv Chem Eng, 2015, 5, 125 52 M.A El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc Chem Res., 2001, 34, 257–264 53 E.A Deliyanni, K.A Matis et al., Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents, J Hazard Mater., 2009, 172, 550– 558 54 A.R Mahdavian, M.A.-S Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification, Chem Eng J., 2010, 159, 264– 271 116 55 T Pradeep, Anshup, Noble metal nanoparticles for water purification: a critical review, Thin Solid Films, 2009, 517, 6441–6478 56 Gehrke I, Geiser A, Somborn-Schulz A, Innovations in nanotechnology for water treatment Nanotechnol Sci Appl, 2015, 8, 1–17 57 Lee A, Elam JW, Darling SB, Membrane materials for water purification: design, development, and application Environ Sci Water Res Technol, 2016, 2(1), 17–42 58 Zhang Y et al, Nanomaterials-enabled water and wastewater treatment NanoImpact, 2016, 3–4, 22–39 59 Y.C Ke, P Stroeve, Polymer-Layered Silicate and Silica Nanocomposites, Chapter 1: Background on Polymer-Layered Silicate and Silica Nanocomposites, Elsevier, 2005 60 T E Twardowski, Introduction to nanocomposite materials: properties, processing, characterization, DEStech Publications, 2007, Pensylvania 17601 USA 61 Opoku, F., Mamo, M A et al., Metal Oxide Polymer Nanocomposites in Water Treatments, Descriptive Inorganic Chemistry Researches of Metal Compounds, 2017, doi:10.5772/67835 62 Gaosheng Zhang, Jiuhui Qu et al., Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal, Water research, 2007, 41, 1921 - 1928 63 Liying Jiang, Zhong Chen et al., Preparation of magnetically recoverable bentonite–Fe3O4–MnO2 composite particles for Cd(II) removal from aqueous solutions, Journal of Colloid and Interface Science, 2018, 513, 748–759 64 Herney-Ramírez J, Madeira LM Use of pillared clay-based catalysts for wastewater treatment through fenton-like processes In: Gil A, Korili SA, Trujillano R, Vicente MA Pillared clays and related catalysts, New York: Springer, 2010 65 Xu A, Sun C et al., Rectorite as catalyst for wet air oxidation of phenol Appl Clay Sci., 2009; 43.,435–8 66 Tian T, et al., Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent, ACS Appl Mater Interfaces, 2014, 6(11), 8542–8548 67 Zhao S et al., Performance improvement of polysulfone ultrafiltration 117 membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive Ind Eng Chem Res, 2012, 51(12), 4661–4672 68 Pan B, Liu X et al., Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles Environ Sci Technol, 2013, 47(16), 9347–9354 69 S Nurettin., Hydrogels of Versatile Size and Architecture for Effective Environmental Applications, Turk J Chem, 2008,32(1), 113-123 70 Hasmukh A Patel, Raksh V Jasra et al., Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment, Bull Mater Sci., 2006, 29(2), 133–145 71 Q H Zeng, D R Paul et al., Clay-Based Polymer Nanocomposites: Research and Commercial Development, J Nanosci Nanotechnol., 2005, 5, 1574–1592, 72 Suprakas Sinha Ray, Masami Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog Polym Sci 2003, 28, 1539–1641 73 Mintova S, Jaber M, Valtchev V, Nanosized microporous crystals: emerging applications Chem Soc Rev, 2015, 44(20),7207–7233 74 Farida Bensadoun, Edu Ruiz et al., A Comparative Study of Dispersion Techniques for Nanocomposite Made with Nanoclays and an Unsaturated Polyester Resin, J of Nanomaterials, 2011, 2011, Article ID 406087, 12 pages 75 Kunyan Wang, Xiaoqing Zhu et al., Preparation of Highly Exfoliated Epoxy/Clay Nanocomposites by the Method of Ultrasonication DispersionMicrowave Cure, Adv Mat Res Vol., 2012, 418-420, 670-673 76 Ting Ting Zhu, Jun Rui Zhang et al., Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites, Appl Clay Sci., 2019, 169, 48-66 77 Bajpai A., Sharma M., Gond L (2019) Nanocomposites for Environmental Pollution Remediation In: Inamuddin, Thomas S., Kumar Mishra R., Asiri A (eds) Sustainable Polymer Composites and Nanocomposites, Springer, Cham., 2019, https://doi.org/10.1007/978-3-030-05399-4_47 78 Jiang, W., Z.W Gu et al., The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system J of Nanoparticle Research, 2011,13(10), 5135-5145 118 79 Abdullah NH, Abdullah LC et al., Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes, Composites Part B, 2019, 162, 538568 80 Ghosh, S., D.F Brougham et al., NMR studies into colloidal stability and magnetic order in fatty acid stabilised aqueous magnetic fluids, Physical Chemistry Chemical Physics, 2010, 12(42), 14009-14016 81 Yallapu, M.M., V Labhasetwar et al., PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications Pharm Res, 2010, 27(11), 2283-95 82 Meledandri C.J., N.T., Brougham D.F Size-controlled magnetoliposomes with tunable magnetic resonance relaxation enhancements J Mat Chem, 2011, 21(1), 214-222 83 Chen L, Huang Y, Yu S et al., Characterization of Co(ii) removal from aqueous solution using bentonite/iron oxide magnetic composites J Radioanal Nucl Chem., 2011, 290, 675–84 84 Wu D, Wang Q, et al Preparation, characterization and adsorptive study of rare earth ions using magnetic GMZ bentonite, Appl Clay Sci., 2012;62–63, 87–93 85 Tireli, Aline Auxiliadora; Joaquim Paulo et al., Influence of magnetic field on the adsorption of organic compound by clays modified with iron Applied Clay Science, 2014, 97-98, 1–7 86 Chang J, Hu M, et al Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite Appl Clay Sci 2016;119, 132–40 87 Danková Z, Fedorová E, Bekényiová A., Bentonite/iron oxide magnetic composites: characterization and application as Pb(ii) adsorbents, Arch Tech Sci 2017;1, 65–75 88 Belachew N, Bekele G., Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye, Silicon, 2020; 12, 603–12 89 Poedji Loekitowati Hariania, Salnib, Fahma Riyantia, Bentonite and BentoniteFe3O4 composites as adsorbent for treatment acid mine drainage synthetic, Journal of Chemical and Pharmaceutical Research, 2015, 7(9S),152-158 90 Fatemeh Ahmadi, Hossein Esmaeili, Chemically modified bentonite/Fe3O4 nanocomposite for Pb(II), Cd(II), and Ni(II) removal from synthetic wastewater, Desalination and Water Treatment, 2018, 110, 154–167 119 91 Zou, C., Zhang, Y et al., Adsorption behavior of magnetic bentonite for removing Hg(II) from aqueous solutions, RSC Advances, 2018, 8(48), 27587– 27595 92 Shabani, E., Salimi, F., & Jahangiri, A Removal of Arsenic and Copper from Water Solution Using Magnetic Iron/Bentonite Nanoparticles (Fe3O4/Bentonite), Silicon, 2018 doi:10.1007/s12633-018-9895-z 93 T Mansouri Jalilian, N Azimi, S Ahmadi, Intensification of Co(II) adsorption from aqueous solution onto Fe3O4/bentonite nanocomposite by high frequency ultrasound waves, J of Applied Research in Water and Wastewater, 2019, (2), 144-149 94 Khizar Hussain Shah, Faheem Shah et al., Native and Magnetic Oxide Nanoparticles (Fe3O4) Impregnated Bentonite Clays as Economic Adsorbents for Cr(III) Removal, Journal of Solution Chemistry, 2019, https://doi.org/10.1007/s10953-019-00912-z 95 Fayazi, Maryam; Ghanbarian, Maryam, One-Pot Hydrothermal Synthesis of Polyethylenimine Functionalized Magnetic Clay for Efficient Removal of Noxious Cr(VI) from Aqueous Solutions, Silicon, 2019, doi:10.1007/s12633019-00105-9 96 ầiftỗi H, Ersoy B, Evcin A Pillared magnetite/clay structures as a function of CTAB and TEOS concentration, Emerg Mater Res 2020; 9, 1–7 97 Alekseeva, Olga V., Agafonov, Alexander V et al., Bentonite/Magnetite Composite for Removal of Nitrofurazone, Clays and Clay Minerals, 2020, doi: 10.1007/s42860-019-00037-w 98 Asmaa E Elsayed, Afaf R Taman et al., Synthesis of Super Magnetite(Fe3O4)/ Bentonite Nanocomposite for Efficient Remediation for Industrial Wastewater Effluents, Egypt.J.Chem., 2020, 63(12), 5011- 5026 99 Wang J, Chen Y, Liu G, Cao Y Synthesis, characterization and photocatalytic activity of inexpensive and non-toxic Fe2O3–Fe3O4 nano-composites supported by montmorillonite and modified by graphene, Compos Part B Eng 2017; 114, 211–22 100 R.A Crane, T.B Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J Hazard Mater, 2012, 211–212, 112– 125 120 101 Chandra Devi Raman, S Kanmani, Textile dye degradation using nano zero valent iron: A review, J of Environmental Management, 2016, 177, 341-355 102 R Mukherjee, A Krishna Saha et al., A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation, Crit Rev Environ Sci Technol., 2016, 46:5, 443-466 103 Denis O’Carroll, Christopher Kocur et al, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Advances in Water Resources, 2013, 51, 104-122 104 Tibor Pasinszki and Melinda Krebsz, Review, Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects, Nanomaterials, 2020, 10(5), 917 105 N A Zarime, H Jamil et al., Decolourization of Anionic Dye by Activated Carbon-Supported Nano-Zero Valent Iron (nZVI), Chemical engineering transactions, 2019, 73, 85-90 106 Alok D Bokare, Kishore M Paknikar et al., Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution, Applied Catalysis B: Environmental, 2008, 79, 270–278 107 Barreto-Rodrigues, Rodriguez, J.J et al Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1, J Environ Chem Eng., 2017, 5, 628–634 108 Kerkez, D.V Konya, Z et al., Three different clay-supported nanoscale zerovalent iron materials for industrial azo dye degradation: A comparative study, J Taiwan Inst Chem Eng., 2014, 45, 2451–2461 109 E.J Kim, Y.S Chang et al., Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems, ACS Appl Mater Inter, 2013, 5, 9628-9634 110 R.C Wu, Y.S Chen et al., Magnetic powder MnO–Fe2O3 composite - a novel material for the removal of azo-dye from water, Water Res, 2005, 39, 630-638 111 J Huang, H Zhang, Redox reactions of iron and manganese oxides in complex systems, Environ Sci Eng., 2020, 14(5), 76 112 G Zhang, R Wu et al., Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal, Water Research, 2007, 41(9), 1921–1928 121 113 Zhang, Gao-Sheng; Li, Guo-Ting et al., Removal Mechanism of As(III) by a Novel Fe−Mn Binary Oxide Adsorbent: Oxidation and Sorption Environ Sci Technol., 2007, 41(13), 4613–4619 114 Meina Liang, Huijun He et al., Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution, Int J Environ Res Public Health, 2020, 17(3), 676 115 K Lu, L Mao et al., Adsorption behavior and mechanism of Fe-Mn binary oxide nanoparticles: Adsorption of methylene blue, J Colloid Interface Sci., 2018, 539, 553-562 116 Qimeng Ning, Yunguo Liu et al, Fabrication of Stabilized Fe–Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors, Int J Environ Res Public Health, 2019, 15(10), 2218 117 Lakshika Weerasundara, Jochen Bundschuh et al., Hydrogels: Novel materials for contaminant removal in water-A review, Crit Rev Environ Sci Technol, 2020, DOI: 10.1080/10643389.2020.1776055 118 B.Cheng, Q.Hu et al., Advances in chitosan-based superabsorbent hydrogels, RSC Advances, 2017, 7, 42036−42046 119 Okada K., Usuki A., Twenty years of polymer–clay nanocomposites, Macromol Mater Eng, 2006, 291, 449–476 120 P M.Pakdel, S.J.Peighambardoust, Review on recent progress in chitosanbased hydrogels for wastewater treatment application, Carbohydr Polym., 2018, 201, 264−279 121 J.Zhang, Q.Wang, A.Wang, Synthesis and characterization of chitosan-gpoly(acrylic acid)/attapulgite superabsorbent composites, Carbohydr Polym., 2007, 68, 367–374 122 Haraguchi K, Takehisa T., Nanocomposite hydrogels: a unique organic– inorganic network structure with extraordinary mechanical, optical, andswelling/de-swelling properties, Adv Mater, 2002,14(16), 1120 123 G.R Mahdavinia, M.J Zohuriaan et al Modified chitosan Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties, Eur Polym J., 2004, 40, 1399–1407 122 124 Y Zheng, A Wang et al., Study on superabsorbent composite XVI Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, Eur Polym J., 2007, 43, 1691–1698 125 X Wang, A Wang et al., Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites Journal of Hazardous Materials, 2009, 168, 970–977 126 X Wang, A Wang, Adsorption Characteristics of Chitosan-g-Poly(acrylic acid)/ Attapulgite Hydrogel Composite for Hg(II) Ions from Aqueous Solution Separation Science and Technology, 2010, 45, 2086–2094 127 P Kumararaja, K M Manjaiah et al., Chitosan-g-poly(acrylic acid)-bentonite composite:a potential immobilizing agent of heavy metals in soil Cellulose, 2018, 25, 3985–3999 128 Y Zheng, A Wang, Potential of Phosphate Ion Removal Using an Al3+-Crosslinked Chitosan-g-Poly(acrylic acid)/Vermiculite Ionic Hybrid, Adsorption Science and Technology, 2018, 28(1), 89-99 129 L Wang, A Wang et al., Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite Desalination, 2011, 266, 33–39 130 Y Zheng, A Wang et al., Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite, Chemical Engineering Journal, 2009, 155, 215–222 131 X.Wang, M Liu Highly efficient adsorption of ammonium onto palygorskite nanocomposite and evaluation of its recovery as a multifunctional slow-release fertilizer, Chem.Eng.J., 2014, 252, 404−414 132 Y Zheng, Y Xie, A Wang, Rapid and wide pH-independent ammoniumnitrogen removal using a composite hydrogel with three-dimensional networks, Chemical Engineering Journal, 2012, 179, 90– 98 133 L Ye Synthetic strategies in molecular imprinting Adv Biochem Eng Biotechnol., 2015, 150, 1-24, 134 G Vasapollo et al., Molecularly imprinted polymers: Present and future prospective Int J Mol Sci., 2011, 12, 5908–5945 135 Ö Erdem, A Denizli et al., Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method, Biomimetics, 2018, 3, 38 123 136 J Fu, L Chen et al., Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions, RSC Adv., 2016, 6, 44087–44095 137 Mishra, S.; Verma, N., Surface ion imprinting-mediated carbon nanofibergrafted highly porous polymeric beads: Synthesis and application towards selective removal of aqueous Pb(II) Chem Eng J., 2017, 313, 1142–1151 138 Khajeh, M.; Sanchooli, E., Synthesis of ion-selective imprinted polymer for manganese removal from environmental water Polym Bull., 2011, 67, 413– 425 139 Cody L Ritt, Achintya N Bezbaruah et al., Assessment of molecularly imprinted polymers as phosphate sorbents, Chemosphere, 2019, 226, 395-404 140 M V Foguel, M P T Sotomayor et al., Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples, Talanta, 2017, 170, 244-251 141 M.A Zulfikar, D Wahyuningrum et al Adsorption of cationic dye from aqueous solution using molecularly imprinted polymers (MIPs), Desalination and Water Treatment, 2018, 103, 102–112 142 Zhang, G., Jefferson, W et al., Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid, J Colloid Inter Sci., 2012, 366(1), 141–146 143 Chen, Z., Naidu, R et al., “Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron”, J Colloid Inter Sci., 2011, 363(2), 601–607 144 C Uzum, K.R Hallam et al., Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions, Chem Eng J, 2008, 144, 213–220 145 Jelena J Gulicovski, Slobodan K Milonjic et al., Point of Zero Charge and Isoelectric Point of Alumina, Materials and Manufacturing Processes, 2008, 23, 615–619 146 Derang Cao, Qingfang Liu et al., High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach, Scientific Reports, 2016, 6(1), 32360 147 Hongtao Cui, Wanzhong Ren et al., Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly 124 monodispersed iron oxide nanoparticles, Adv Powder Technol., 2013, 24, 93– 97 148 A.M Motawie, D.E Abulyazied, Physico-chemical characteristics of nanoorgano bentonite prepared using different organo-modifiers, Egyptian Journal of Petroleum, 2014, 23, 331–338 149 Khouloud Jlassi, Mohamed M Chehimi, Exfoliated clay/polyaniline nanocomposites through tandem diazonium cation exchange reactions and insitu oxidative polymerization of aniline, RSC Adv., 2014, 4, 65213 150 Ming Ma et al., Preparation and characterization of magnetite nanoparticles coated by amino silane, Colloids and Surfaces A: Physicochem Eng Aspects, 2003, 212, 219-226 151 N Belachew & G Bekele, Synergy of Magnetite Intercalated Bentonite for Enhanced Adsorption of Congo Red Dye, Silicon, 2020, 12, 603–612 152 Ravindra Reddy T, Kaneko S et al., Spectroscopic Characterization of Bentonite, J Laser Opt Photonics, 2017, 4:3, DOI: 10.4172/2469410X.1000171 153 A.T Kan, and L Cong et al., Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate, J Mater Res., 2005, 20(12), 3255-3264 154 Z Orolinova, A Mockovciakova, Structural study of bentonite/iron oxide composites, Materials Chemistry and Physics, 2009, 114, 956–961 155 Ahmadi, H Esmaeili, Chemically modified bentonite/Fe3O4 nanocomposite for Pb(II), Cd(II), and Ni(II) removal from synthetic wastewater, Desalin Water Treat., 2018, 110, 154-167 156 H M Lu, W T Zheng and Q Jiang, Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature, J Phys D: Appl Phys., 2007, 40, 320–325 157 Caizer C., Nanoparticle Size Effect on Some Magnetic Properties, In: Aliofkhazraei M (eds) Handbook of Nanoparticles Springer, Cham, 2016 158 Linlin Hao, Mengzhu Liu, Nannan Wang and Guiju Li, A critical review on arsenic removal from water using iron-based adsorbents, RSC Adv., 2018, 8, 39545 159 S R Chowdhury & E K Yanful, Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles, Water Environ J, 2011, 25, 429–437 125 160 Jin Zhang, Zhaocong Hui, Adsorption Properties of Magnetic Magnetite Nanoparticle for Coexistent Cr(VI) and Cu(II) in Mixed Solution, Water, 2020, 12, 446 161 Luz Stella Gaona Galindo, Ambrósio Florêncio de Almeida Neto et al., Removal of Cadmium(II) and Lead(II) Ions from Aqueous Phase on Sodic Bentonite, Materials Research., 2013; 16(2), 515-527 162 Mohsen Hosseinzadeh1, Seyyed Ali Seyyed Ebrahimi, Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation, J Ultrafine Grained Nanostruct Mater, 2016, 49(2), 72-79 163 Z Danková, E Fedorová, A Be ényiová Bentonite/iron oxide magnetic composite characterization and application as Pb(II) adsorbents, Archives for Technical Sciences, 2017, 16(1), 65-75 164 Zahra Monsef Khoshhesab, Maryam Dargahi et al., Synthesis of Magnetic Graphene Oxide Nanocomposite for Adsorption Removal of Reactive Red 195: Modelling and Optimizing via Central Composite Design, Int J Nanosci Nanotechnol., 2020, 16 (1), 35-48 165 Shaomin Gao, Donghui Chen et al., Magnetic composite Fe3O4/CeO2 for adsorption of azo dye, J of Rare Earths, 2018, 369(9), 986-993 166 Maryam Shanehsaz, Yousefali Ghorbani et al., Removal of Reactive Red195 Synthetic Textile Dye using Polypyrrole-coated Magnetic Nanoparticles as an Efficient Adsorbent, J of Applied Chemical Research, 2016, 10(2), 85-96 167 M A Bezerra, L A Escaleira et al., Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 2008, 76(5), 965-977 168 Khuri and S Mukhopadhyay, Response surface methodology, Wiley Interdiscip Rev Comput Stat., 2010, 2(2), 128-149 169 Gharbani P, Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnOX-CeO2 using response surface methodology”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 191–197 170 F S Freyria, B Bonelli et al., Role of pH in the Aqueous Phase Reactivity of Zerovalent Iron Nanoparticles with Acid Orange 7, a Model Molecule of Azo Dyes, J of Nanomaterials, Vol https://doi.org/10.1155/2017/2749575 2017, Article ID 2749575 126 171 P V Thitame, S R Shukla, Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials, Int J Environ Sci Technol., 2016, 13, 561–570 172 J Li, Q Ma et al., Adsorption of reactive dyes onto chitosan/montmorillonite intercalated composite: Multi-response optimization, kinetic, isotherm and thermodynamic study, Water Sci & Technol., 2018, 77(11), wst2018221 173 J Zhang, L Wang, A Wang Preparation and properties of chitosan-gpoly(acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization, Ind Eng Chem Res., 2007, 46, 2497-2502 174 E W Maina, H J Wanyika, A N Gacanja Instrumental characterization of montmorillonite clay by FT-IR and XRD from J.K.U.A.T Farm, in the Republic of Kenya, Chem Mater Res., 2015, 7(10), 43-49 175 P Kumararaja, K M Manjaiah et al., Chitosan-g-poly(acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil, Cellulose, 2018, 25, 3985–3999 176 Zheng, Y., Huang, D.J., Wang, A.Q., Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+recovery, Anal Chim Acta, 2011, 687(2), 193–200