Hướng dẫn sửa chữa bộ nguồn máy tính ATX

32 11.4K 18
Hướng dẫn sửa chữa bộ nguồn  máy tính ATX

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

hướng dẫn cụ thể, chính xác , tính chất linh kiện. bộ nguồn máy tính sữa chữa dễ dàng, tài liệu đã chỉ chi tiết từng phần.

Hướng dẫn sửa chữa bộ nguồn ATX 14-11-2008 | lqv77 | 83 phản hồi » 1. Nguyên lý hoạt động của bộ nguồn ATX . Sơ đồ khối của bộ nguồn ATX Bộ nguồn có 3 mạch chính là: - Mạch chỉnh lưu có nhiệm vụ đổi điện áp AC 220V đầu vào thành DC 300V cung cấp cho nguồn cấp trước và nguồn chính . - Nguồn cấp trước có nhiệm vụ cung cấp điện áp 5V STB cho IC Chipset quản lý nguồn trên Mainboard và cung cấp 12V nuôi IC tạo dao động cho nguồn chính hoạt động (Nguồn cấp trước hoạt động liên tục khi ta cắm điện) - Nguồn chính có nhiệm vụ cung cấp các điện áp cho Mainboard, các ổ đĩa cứng, đĩa mềm, đĩa CD Rom nguồn chính chỉ hoạt động khí có lệnh PS_ON điều khiển từ Mainboard . 1.1 Mạch chỉnh lưu: - Nhiệm vụ của mạch chỉnh lưu là đổi điện áp AC thành điện áp DC cung cấp cho nguồn cấp trước và nguồn xung hoạt động . - Sơ đồ mạch như sau: 1 - Nguồn ATX sử dụng mạch chỉnh lưu có 2 tụ lọc mắc nối tiếp để tạo ra điện áp cân bằng ở điển giữa. - Công tắc SW1 là công tắc chuyển điện 110V/220V bố trí ở ngoài khi ta gạt sang nấc 110V là khi công tắc đóng => khi đó điện áp DC sẽ được nhân 2, tức là ta vẫn thu được 300V DC - Trong trường hợp ta cắm 220V mà ta gạt sang nấc 110V thì nguồn sẽ nhân 2 điện áp 220V AC và kết quả là ta thu được 600V DC => khi đó các tụ lọc nguồn sẽ bị nổ và chết các đèn công suất. 1.2 Nguồn cấp trước: - Nhiệm vụ của nguồn cấp trước là cung cấp điện áp 5V STB cho IC quản lý nguồn trên Mainboard và cung cấp 12V cho IC dao động của nguồn chính . - Sơ đồ mạch như sau: - R1 là điện trở mồi để tạo dao động - R2 và C3 là điện trở và tụ hồi tiếp để duy trì dao động - D5, C4 và Dz là mạch hồi tiếp để ổn định điện áp ra - Q1 là đèn công suất 1.3 Nguồn chính: - Nhiệm vụ : Nguồn chính có nhiệm vụ cung cấp các mức điện áp cho Mainboard và các ổ đĩa hoạt động - Sơ đồ mạch của nguồn chính như sau: 2 - Q1 và Q2 là hai đèn công suất, hai đèn này đuợc mắc đẩy kéo, trong một thời điểm chỉ có một đèn dẫn đèn kia tắt do sự điều khiển của xung dao động . - OSC là IC tạo dao động, nguồn Vcc cho IC này là 12V do nguồn cấp trước cung cấp, IC này hoạt động khi có lệnh P.ON = 0V , khi IC hoạt động sẽ tạo ra dao động dạng xung ở hai chân 1, 2 và được khuếch đại qua hai đèn Q3 và Q4 sau đó ghép qua biến áp đảo pha sang điều khiển hai đèn công suất hoạt động . - Biến áp chính : Cuộn sơ cấp được đấu từ điểm giữa hai đèn công suất và điểm giữa hai tụ lọc nguồn chính => Điện áp thứ cấp được chỉnh lưu thành các mức điện áp +12V, +5V, +3,3V, -12V, -5V => cung cấp cho Mainboard và các ổ đĩa hoạt động . - Chân PG là điện áp bảo vệ Mainboard , khi nguồn bình thường thì điện áp PG > 3V, khi nguồn ra sai => điện áp PG có thể bị mất, => Mainboard sẽ căn cứ vào điện áp PG để điều khiển cho phép Mainboard hoạt động hay không, nếu điện áp PG < 3V thì Mainboard sẽ không hoạt động mặc dù các điện áp khác vẫn có đủ. 2. Các Pan thường gặp của bộ nguồn ATX: 2.1: Bộ nguồn không hoạt động: - Kích nguồn không chạy (Quạt nguồn không quay). * Nguyên nhân hư hỏng trên có thể do: - Chập một trong các đèn công suất => dẫn đến nổ cầu chì , mất nguồn 300V đầu vào . - Điện áp 300V đầu vào vẫn còn nhưng nguồn cấp trước không hoạt động, không có điện áp 5V STB - Điện áp 300V có, nguồn cấp trước vẫn hoạt động nhưng nguồn chính không hoạt động . * Kiểm tra: - Cấp điện cho bộ nguồn và kiểm tra điện áp 5V STB ( trên dây mầu tím) xem có không ? ( đo giữ dây tím và dây đen ) => Nếu có 5V STB ( trên dây mầu tím ) => thì sửa chữa như Trường hợp 1 ở dưới 3 - Nếu đo dây tím không có điện áp 5V, bạn cần tháo vỉ nguồn ra ngoài để kiểm tra . - Đo các đèn công suất xem có bị chập không ? đo bằng thang X1Ω => Nếu các đèn công suất không chập => thì sửa như Trường hợp 2 ở dưới . => Nếu có một hoặc nhiều đèn công suất bị chập => thì sửa như Trường hợp 3 ở dưới * Sửa chữa: - Trường hợp 1: Có điện áp 5V STB nhưng khi đấu dây PS_ON xuống Mass quạt không quay . Phân tích : Có điện áp 5V STB nghĩa là có điện áp 300V DC và thông thường các đèn công suất trên nguồn chính không hỏng, vì vậy hư hỏng ở đây là do mất dao động của nguồn chính, bạn cần kiểm tra như sau: - Đo điện áp Vcc 12V cho IC dao động của nguồn chính - Đo kiểm tra các đèn Q3 và Q4 khuếch đại đảo pha . - Nếu vẫn có Vcc thì thay thử IC dao động - Trường hợp 2: Cấp điện cho nguồn và đo không có điện áp 5V STB trên dây mầu tím , kiểm tra bên sơ cấp các đèn công suất không hỏng, cấp nguồn và đo vẫn có 300V đầu vào. - Phân tích : Trường hợp này là do nguồn cấp trước không hoạt động, mặc dù đã có nguồn 300V đầu vào, bạn cần kiểm tra kỹ các linh kiện sau của nguồn cấp trước : 4 - Kiểm tra điện trở mồi R1 - Kiểm tra R, C hồi tiếp : R2, C3 - Kiểm tra Dz - Trường hợp 3: Không có điện áp 5V STB, khi tháo vỉ mạch ra kiểm tra thấy một hoặc nhiều đèn công suất bị chập . - Phân tích: Nếu phát hiện thấy một hoặc nhiều đèn công suất bị chập thì ta cần phải tìm hiểu và tự trả lời được câu hỏi : Vì sao đèn công suất bị chập? bởi vì đèn công suất ít khi bị hỏng mà không có lý do . - Một trong các nguyên nhân làm đèn công suất bị chập là 1. Khách hàng gạt nhầm sang điện áp 110V 2. Khách hàng dùng quá nhiều ổ đĩa => gây quá tải cho bộ nguồn. 3. Một trong hai tụ lọc nguồn bị hỏng => làm cho điện áp điểm giữa hai đèn công suất bị lệch. - Bạn cần phải kiểm tra để làm rõ một trong các nguyên nhân trên trước khi thay các đèn công suất. - Khi sửa chữa thay thế, ta sửa nguồn cấp trước chạy trước => sau đó ta mới sửa nguồn chính. - Cần chú ý các tụ lọc nguồn chính, nếu một trong hai tụ bị hỏng sẽ làm cho nguồn chết công suất, nếu một tụ hỏng thì đo điện áp trên hai tụ sẽ bị lệch ( bình thường sụt áp trên mỗi tụ là 150V) - Cần chú ý công tắc 110V- 220V nếu gạt nhầm sang 110V thì điện áp DC sẽ là 600V và các đèn công suất sẽ hỏng ngay lập tức . 2.2 : Mỗi khi bật công tắc nguồn của máy tính thì quạt quay vài vòng rồi thôi 5 * Phân tích nguyên nhân : - Khi bật công tắc nguồn => quạt đã quay được vài vòng chứng tỏ => Nguồn cấp trước đã chạy => Nguồn chính đã chạy => Vậy thì nguyên nhân dẫn đến hiện tượng trên là gì ??? * Hiện tượng trên là do một trong các nguyên nhân sau : - Khô một trong các tụ lọc đầu ra của nguồn chính => làm điện áp ra bị sai => dẫn đến mạch bảo vệ cắt dao động sau khi chạy được vài giây . - Khô một hoặc cả hai tụ lọc nguồn chính lọc điện áp 300V đầu vào => làm cho nguồn bị sụt áp khi có tải => mạch bảo vệ cắt dao động * Kiểm tra và sửa chữa : - Đo điện áp đầu vào sau cầu đi ốt nếu < 300V là bị khô các tụ lọc nguồn. - Đo điện áp trên 2 tụ lọc nguồn nếu lệch nhau là bị khô một trong hai tụ lọc nguồn, hoặc đứt các điện trở đấu song song với hai tụ . - Các tụ đầu ra ( nằm cạnh bối dây ) ta hãy thay thử tụ khác, vì các tụ này bị khô ta rất khó phát hiện bằng phương pháp đo đạc . Bộ nguồn ATX toàn tập: Mạch cấp trước dạng 2 28-06-2009 | lqv77 | 1 phản hồi » • Tổng quan về nguồn ATX • Mạch lọc xoay chiều và mạch nắng lọc sơ cấp • Mạch cấp trước dạng 1 Dạng 2 : Hồi tiếp gián tiếp 6 Mạch được cấp nguồn 300Vdc từ mạch nắn/lọc sơ cấp. Tác dụng linh kiện: Rhv : Điện trở hạn chế, điện áp ra sau nó còn khoảng 270V. R3, R5 : Định thiên (mồi) cho Q3. Q3 : Công suất standby, ở đây dùng Mosfet 2N60. R4 : Tạo hồi tiếp âm điện áp, sử dụng sụt áp trên R4 như một sensor để kiểm tra dòng qua Q3, thông qua đó sẽ điều chỉnh để Q3 hoạt động ổn định. ZD1 : Ổn định điện áp chân G, nhằm bảo vệ không để Q3 mở lớn, tránh cho Q3 bị đánh thủng. C34 : Tụ nhụt, bảo vệ Q3 không bị đánh thủng khi chịu điện áp âm cực lớn của thời kỳ quét ngược. R9 : Điện trở phân áp, tạo sự ổn định (tương đối) cho chân G Q3 và C Q4. L1 : Tải Q3. L2 : Cuộn hồi tiếp. Q4 : Mắc phân áp cho chân G Q3, đóng vai trò đảo pha điện áp hồi tiếp. 7 D5 : Nắn hồi tiếp theo kiểu mạch nắn song song nhằm tạo điện áp (+) ở điểm A. C8 : Lọc điện áp hồi tiếp. U1 : Mạch so quang, hồi tiếp âm ổn định điện áp STB. R17 : Điện trở nâng cao mức thấp, với mục đích ngắt điện áp hồi tiếp tới chân B Q4 khi điện áp này giảm xuống còn ~ 2V. C4, R6, D3 : Khử điện áp ngược, chống ngắt dao động. Nguyên lý: Điện áp 300V từ mạch nắn/lọc sơ cấp qua Rhv còn ~270V cấp cho mạch. Điện áp này chia làm 2 đường : Đường 1 : Vào điểm PN6, ra PN4 tới chân D Q3. Đường 2 : Qua R3, R5 kết hợp phân áp R9 định thiên cho Q3, đồng thời cấp cho Q4 (chân C). Các bạn hãy để ý Q4 mắc phân áp cho G Q3 nên nếu Q4 bão hòa thì điện áp tại G Q3 ~ 0, Q3 khóa. Nhờ định thiên (mồi) bởi R3, R5 nên Q3 mở. Dòng điện đi từ 270V qua L1, qua DS Q3 xuống mass, kín mạch. Vì dòng này đi qua L1, theo đặc tính của cuộn cảm (luôn sinh ra dòng chống lại dòng qua nó theo hiện tượng cảm ứng điện từ) nên dòng qua L1 không đạt mức bão hòa ngay mà tăng lên từ từ. Vì vậy từ trường sinh ra trên lõi biến áp STB cun tăng từ từ (từ trường động). Theo định luật cảm ứng điện từ Lenz, từ trường tăng từ từ trên lõi biến áp STB sẽ làm phát sinh trên tất cả các cuộn dây của biến áp 1 suất điện động cảm ứng. Điện áp cảm ứng trên L2 được nắn bởi D5 và lọc bằng C8 lấy ra điện áp 1 chiều cực tính âm (+) ở điểm A, được ổn định (tương đối) bằng R16, độ ổn định phụ thuộc vào tích số T = R16xC8 (thời hằng – hằng số thời gian tích thoát của mạch RC) Điện áp tại điểm A lại qua CE U1 (so quang) tới chân B của Q4. Vì là điện áp dương nên nó làm cho Q4 bão hòa. Khi Q4 bão hòa thì điện áp tại chân C Q4 ~ 0, mà chân C Q4 lại nối vào chân G Q3 nên UgQ3 ~ 0 làm cho Q3 khóa. Khi dòng qua Q3 khóa, dòng qua L1 mất đi, từ trường trên L1 cũng mất đi làm cho từ trường trên lõi biến áp = 0 dẫn đến điện áp cảm ứng trên các cuộn day biến áp STB = 0. Dĩ nhiên điện áp cảm ứng trên cuộn L2 mất. Vì điện áp trên L2 mất nên không đưa ra áp (+) tại điểm A nữa. Tuy vậy vì có C8 đã nạp (lúc trước) nên giờ nó xả làm cho điện áp tại điểm A ko mất ngay, việc C8 xả sẽ duy trì mức (+) ở chân B Q4 thêm 1 thời gian nữa và Q4 tieps tục bão hòa, Q3 tiếp tục khóa. Tới 8 khi điện áp (+) do C8 xả ko đủ lớn (≤2V) thì R17 sẽ ngắt điện áp hồi tiếp, chân B Q4 sẽ giảm về O, Q4 khóa. Khi Q4 khóa thì điện áp định thiên do R3, R5 được phục hồi và Q3 lại mở. Một chu trình mở/khóa lại bắt đầu. Tần số dao động của mạch: Được quyết định bởi L2/C8/R16. Đây là cộng hưởng nối tiếp nên khi xảy ra cộng hưởng thì điện áp trên L2 là max, khi đó dòng điện áp tại điểm A là max đủ cho R17 dẫn, Q4 bão hòa. Nếu mất cộng hưởng thì điên áp trên L2 min, điện áp điểm A min không đủ thắng lại sụt áp trên R17 làm Q4 khóa, Q3 mở (cố định) và dòng qua L1 sẽ là cố định ko tạo ra được từ trường động làm điện áp cảm ứng trên tất cả các cuộn của biến áp STB mất đi. Nói cách khác thì tần số dao động của mạch chính bằng 1/2∏xsqrt(L2xC8R16). Thực tế, khi Q3 khóa, dòng qua L1 ko mất ngay do từ trường trên lõi biến áp vẫn còn (nhỏ) làm xuất hiện điện áp cảm ứng trên L1 với chiều (-) ở D Q3 ,điện áp này tồn tại trong thời gian cực ngắn (giống như quét ngược ở công suất dòng tivi, CRT) nên có giá trị rất lớn (~ 800V với nguồn đời mới) làm phát sinh 2 hậu quả : Tác dụng của C4, R6, D3 giống như mạch hồi tiếp trực tiếp. Điện áp cảm ứng trên L3 được sinh ra nhờ từ trường biến đổi do Q2 liên tục bão hòa/khóa. Điện áp này được nắn/lọc lấy ra điện áp standby. Đường 1 : Nắn/lọc bởi D9/C15 ra 12V nuôi dao động, khuyếch đại kích thích. Đường 2 : Nắn/lọc bởi D7/C13/C18 5V cho dây tím, hạ áp qua trở cho PS-ON, nuôi mạch thuật toán tạo PG. Ổn định điện áp : Sử dụng OPTO U1. Nếu điện áp ra tăng (vì tần số dao động thay đổi) thì nguồn ra 5V tăng lên. Khi đó nguồn cấp cho cực điều khiển của U1 (TL431) từ 5V qua R27 tăng lên làm cho 431 mở lớn. Để ý thấy 431 mắc nối tiếp với diode phát của OPTO, vì 431 mở lớn nên dòng qua diode (từ 5V STB qua R30, qua diode, qua 431 xuống mass) tăng lên, cường độ sáng của diode tăng tác động tới CE U1 làm điện trở Rce U1 giảm, điện trở này lại mắc nối tiếp từ điểm A về R17 nên làm cho điện áp hồi tiếp về B Q4 (qua R17) tăng lên, kết quả là Q4 bão hòa/Q3 khóa sớm hơn thường lệ. Nói cách khác thì thời gian mở cửa Q3 trong 1 giây nhỏ sẽ giảm xuống làm điện áp ra giảm. Nếu điện áp ra giảm (vì tần số dao động thay đổi) thì nguồn ra 5V giảm. Khi đó nguồn cấp cho cực điều khiển của U1 (TL431) từ 5V qua R27 giảm lên làm cho 431 mở nhỏ. Để ý thấy 431 mắc nối tiếp với diode phát của OPTO, vì 431 mở lớn nên dòng qua diode (từ 5V STB qua R30, qua diode, qua 431 xuống mass) giảm xuống, cường độ sáng của diode giảm tác động tới CE U1 làm điện trở Rce U1 tăng, điện trở này lại mắc nối tiếp từ 9 điểm A về R17 nên làm cho điện áp hồi tiếp về B Q4 (qua R17) giảm xuống, kết quả là Q4 bão hòa/Q3 khóa muộn hơn thường lệ. Nói cách khác thì thời gian mở cửa Q3 trong 1 giây nhỏ sẽ tăng lên làm điện áp ra tăng. Ổn định điện áp : Sử dụng điện trở hồi tiếp âm điện áp R4. Nếu Q3 mở lớn (làm áp ra cao) thì dòng qua R4 tăng. Sụt áp trên R4 (tính bằng UR4 = IQ3 x R4) tăng lên. Để ý sẽ thấy sụt áp này đưa về chân B Q4 qua R8 làm Ub Q4 tăng, Q4 sẽ bão hòa, Q3 khóa sớm hơn thường lệ. Nói cách khác thì thời gian mở cửa Q3 trong 1 giây nhỏ sẽ giảm xuống làm điện áp ra giảm. Nếu Q3 mở nhỏ (làm áp ra thấp) thì dòng qua R4 giảm. Sụt áp trên R4 (tính bằng UR4 = IQ3 x R4) giảm xuống. Để ý sẽ thấy sụt áp này đưa về chân B Q4 qua R8 làm Ub Q4 giảm, Q4 sẽ bão hòa, Q3 khóa muộn hơn thường lệ. Nói cách khác thì thời gian mở cửa Q3 trong 1 giây nhỏ sẽ tăng lên làm điện áp ra tăng. Nguồn ATX: Lỗi thường gặp ở mạch nguồn chính 16-02-2009 | lqv77 | 38 phản hồi » 10 [...]... – So sánh hai mạch nguồn có hồi tiếp so quang 26 1 Mạch nguồn Stanby số 1 2 Mạch nguồn Stanby số 2 27 Bạn đưa trỏ chuột vào sơ đồ để xem chú thích cho các linh kiện Sự giống nhau: - Hai bộ nguồn trên có nguyên lý hoạt động tương tự như nhau - Cả hai bộ nguồn đếu có mạch hồi tiếp so quang để ổn định điện áp ra - Cả hai nguồn đều có đèn công suất và đèn sửa sai Sự khác nhau: - Mạch nguồn số 1 có đèn công... mắc cho từng linh kiện trên bộ nguồn Câu hỏi 1 – Cho biết nguyên nhân khi bộ nguồn trên bị mất điện áp ra (ra bằng 0V) Trả lời: Bộ nguồn trên cho điện áp ra bằng 0V là do nguồn bị mất dao động, có thể do hỏng các linh kiện sau đây: - Đứt điện trở mồi - Bong chân R82 hoặc C15 (làm mất điện áp hồi tiếp) - Mất điện áp 300V DC đầu vào 23 Câu hỏi 2 – Cho biết nguyên nhân khi bộ nguồn trên có điện áp ra rất... tổng điện áp trên hai tụ cũng bị giảm theo Lưu ý : Điện áp ở điểm giữa hai tụ lọc nguồn bị lệch là một nguyên nhân làm hỏng các đèn công suất của nguồn chính 4 – Hư hỏng thường gặp của bộ nguồn 1 Hư hỏng 1 – Nguồn bị mất dao động, các đèn công suất không hoạt động.Biểu hiện: Khi chập chân PS ON xuống mass nhưng quạt nguồn không quay, mặc dù đo điện áp 5V STB vẫn tốt, kiểm tra đèn công suất không bị... số 1 có đèn công suất là Mosfet trong khi mạch nguồn số 2 có đèn công suất là đèn BCE - Mạch nguồn số 1 do sử dụng Mosfet nên điện trở mồi có trị số rất lớn (2MΩ), trong khi mạch nguồn thứ 2 điện trở mồi chỉ có 680KΩ 3 – Phân tích các bệnh thường gặp của bộ nguồn có hồi tiếp so quang 1 Bệnh 1 – Điện áp ra bằng 0 VNguyên nhân: Điện áp ra bằng 0V là do nguồn bị mất dao động hoặc do bị mất điện áp 300V... chập chân PS ON xuống mass, quạt nguồn quay 1 – 2 vòng rồi tắt Nguyên nhân - Do chập đi ốt chỉnh lưu ở đầu ra - Do điện áp ra bị tăng cao lên mạch bảo vệ hoạt động và ngắt – Nguồn Stanby có hồi tiếp trực tiếp 1 Sơ đồ nguyên lý Sơ đồ nguyên lý của nguồn Stanby có hồi tiếp trực tiếp Nguyên lý hoạt động Nguyên lý tạo và duy trì dao động - Khi có điện áp đầu vào cấp cho bộ nguồn, một dòng điện sẽ đi qua... ZD27 bị đứt hoặc D5 bị đứt Câu hỏi 4 – Nếu nguồn trên bị đứt điện trở mồi (đứt R81) thì sinh ra bệnh gì ? Trả lời - Khi đứt điện trở mồi thì nguồn sẽ bị mất dao động và tất nhiên điện áp đầu ra sẽ bị mất Câu hỏi 5 – Nếu nguồn trên bị bong chân tụ hồi tiếp C15 thì sinh ra bệnh gì ? Trả lời - Nếu bị bong chân tụ C15 thì nguồn cũng bị mất dao động, nhưng ở đây là nguồn hồi tiếp âm nên khi bong chân các linh... tăng lên => đèn công suất hoạt động mạnh hơn => làm cho điện áp ra tăng lên về vị trí ban đầu 2 Đặc điểm của loại nguồn này - Đây là loại nguồn sử dụng điện áp hồi tiếp âm cho nên điện trở định thiên khá nhỏ và cho dòng định thiên tương đối lớn, khi mới có nguồn 300V đầu vào, đèn công suất dẫn mạnh, nhờ mạch hồi tiếp âm mà nó chuyển sang trạng thái ngắt tạo thành dao động và không làm hỏng đèn - Trong... => và điện áp ra sẽ tăng Câu hỏi 10 – Nếu nguồn trên đứt R8 hoặc bong chân C14 thì sinh ra hiện tượng gì ? Trả lời - Đây là mạch nhụt xung để bảo vệ các xung nhọn đánh thủng mối CE của đèn công suất, nếu mất tác dụng của mạch này thì đèn công suất có thể bị hỏng, bị chập 25 4 Nguồn Stanby có mạch bảo vệ quá dòng Mạch nguồn này có nguyên lý hoàn toàn giống mạc nguồn ở trên nhưng có thêm mạch bảo vệ quá... ra có xu hướng tăng => điện áp trên cuộn hồi tiếp cũng tăng => điện áp hồi tiếp (Uht) càng âm hơn => làm cho điện áp chân B đèn công suất giảm xuống => đèn công suất hoạt động yếu đi => làm cho điện áp ra giảm xuống về vị trí ban đầu - Ngược lại khi điện áp đầu vào giảm => điện áp đầu ra có xu hướng giảm => điện áp trên cuộn hồi tiếp cũng giảm => điện áp hồi tiếp (Uht) bớt âm hơn (hay có xu hướng dương... 5,3V thì cũng sẽ có dòng điện chạy qua ZD3 về làm cho đèn Q11 dẫn => Khi đèn Q11 dẫn => kéo theo đèn Q9 dẫn => dòng điện đi qua Q9 => đi qua đi ốt D27 vào làm cho chân (4) IC dao động tăng lên => biên độ dao động ra giảm xuống bằng 0 => các đèn công xuất ngưng hoạt động 13 • Phân tích nguyên lý của mạch bảo vệ quá dòng Khi nguồn có hiện tượng chập đầu ra (quá dòng) khi đó các đường điện áp ra sẽ giảm . Hướng dẫn sửa chữa bộ nguồn ATX 14-11-2008 | lqv77 | 83 phản hồi » 1. Nguyên lý hoạt động của bộ nguồn ATX . Sơ đồ khối của bộ nguồn ATX Bộ nguồn có 3 mạch chính là: -. thường gặp của bộ nguồn ATX: 2.1: Bộ nguồn không hoạt động: - Kích nguồn không chạy (Quạt nguồn không quay). * Nguyên nhân hư hỏng trên có thể do: - Chập một trong các đèn công suất => dẫn đến nổ. suất. - Khi sửa chữa thay thế, ta sửa nguồn cấp trước chạy trước => sau đó ta mới sửa nguồn chính. - Cần chú ý các tụ lọc nguồn chính, nếu một trong hai tụ bị hỏng sẽ làm cho nguồn chết công

Ngày đăng: 11/06/2014, 15:48

Từ khóa liên quan

Mục lục

  • Hướng dẫn sửa chữa bộ nguồn ATX

  • Bộ nguồn ATX toàn tập: Mạch cấp trước dạng 2

  • Nguồn ATX: Lỗi thường gặp ở mạch nguồn chính

Tài liệu cùng người dùng

Tài liệu liên quan