1. Trang chủ
  2. » Khoa Học Tự Nhiên

modeling evolution an introduction to numerical methods feb 2010

464 556 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Oxford U. Press - Modeling Evolution an Introduction to numerical methods (2010) (ATTiCA)

  • Contents

  • 1 Overview

    • 1.1 Introduction

      • 1.1.1 The aim of this book

      • 1.1.2 Why R and MATLAB?

    • 1.2 Operational definitions of fitness

      • 1.2.1 Constant environment, density-independent, stable-age distribution

      • 1.2.2 Demographic stochasticity

      • 1.2.3 Environments of fixed length (e.g., deterministic seasonal environments)

      • 1.2.4 Constant environment, density-dependence with a stable equilibrium

      • 1.2.5 Constant environment, variable population dynamics

      • 1.2.6 Temporally stochastic environments

      • 1.2.7 Temporally variable, density-dependent environments

      • 1.2.8 Spatially variable environments

      • 1.2.9 Social environment

      • 1.2.10 Frequency-dependence

    • 1.3 Some general principles of model building

    • 1.4 An introduction to modeling in R and MATLAB

      • 1.4.1 General assumptions

      • 1.4.2 Mathematical assumptions of model 1

      • 1.4.3 Mathematical assumptions of model 2

      • 1.4.4 Mathematical assumptions of model 3

      • 1.4.5 Mathematical assumptions of model 4

      • 1.4.6 Mathematical assumptions of model 5

      • 1.4.7 Mathematical assumptions of model 6

    • 1.5 Summary of modeling approaches described in this book

      • 1.5.1 Fisherian optimality analysis (Chapter 2)

      • 1.5.2 Invasibility analysis (Chapter 3)

      • 1.5.3 Genetic models (Chapter 4)

      • 1.5.4 Game theoretic models (Chapter 5)

      • 1.5.5 Dynamic programming (Chapter 6)

  • 2 Fisherian optimality models

    • 2.1 Introduction

      • 2.1.1 Fitness measures

      • 2.1.2 Methods of analysis: introduction

      • 2.1.3 Methods of analysis: W = f(&#952[sub(1)], &#952[sub(2}],...,&#952[sub(k)], x[sub(1)], x[sub(2)],...,x[sub(n)]) and well-behaved

      • 2.1.4 Methods of analysis: W = f(&#952[sub(1)],&#952[sub(2)],...,&#952[sub(k)],x[sub(1)],x[sub(2)],...,x[sub(n)]) and not well-behaved

      • 2.1.5 Methods of analysis: g(w) = f(&#952[sub(1)],&#952[sub(2)],...,&#952[sub(k)],x[sub(1)],x[sub(2)],...,x[sub(n)],W)

    • 2.2 Summary of scenarios (Table 2.1)

    • 2.3 Scenario 1: A simple trade-off model

      • 2.3.1 General assumptions

      • 2.3.2 Mathematical assumptions

      • 2.3.3 Plotting the fitness function

      • 2.3.4 Finding the maximum using the calculus

      • 2.3.5 Finding the maximum using a numerical approach

    • 2.4 Scenario 2: Adding age structure may not affect the optimum

      • 2.4.1 General assumptions

      • 2.4.2 Mathematical assumptions

    • 2.5 Scenario 3: Adding age-specific mortality that affects the optimum

      • 2.5.1 General assumptions

      • 2.5.2 Mathematical assumptions

      • 2.5.3 Plotting the fitness function

      • 2.5.4 Finding the maximum using the calculus

      • 2.5.5 Finding the maximum using a numerical approach

    • 2.6 Scenario 4: Adding age-specific mortality that affects the optimum and using integration rather than summation

      • 2.6.1 General assumptions

      • 2.6.2 Mathematical assumptions

      • 2.6.3 Plotting the fitness function

      • 2.6.4 Finding the maximum using the calculus

      • 2.6.5 Finding the maximum using a numerical approach

    • 2.7 Scenario 5: Maximizing the Malthusian parameter, r, rather than expected lifetime reproductive success, R[sub(o)]

      • 2.7.1 General assumptions

      • 2.7.2 Mathematical assumptions

      • 2.7.3 Plotting the fitness function

      • 2.7.4 Finding the maximum using the calculus

      • 2.7.5 Finding the maximum using a numerical approach

    • 2.8 Scenario 6: Stochastic variation in parameters

      • 2.8.1 General assumptions

      • 2.8.2 Mathematical assumptions

      • 2.8.3 Plotting the fitness function

      • 2.8.4 Finding the maximum using the calculus

      • 2.8.5 Finding the maximum using a numerical approach

    • 2.9 Scenario 7: Discrete temporal variation in parameters

      • 2.9.1 General assumptions

      • 2.9.2 Mathematical assumptions

      • 2.9.3 Plotting the fitness function

      • 2.9.4 Finding the maximum using the calculus

      • 2.9.5 Finding the maximum using numerical methods

    • 2.10 Scenario 8: Continuous temporal variation in parameters

      • 2.10.1 General assumptions

      • 2.10.2 Mathematical assumptions

      • 2.10.3 Plotting the fitness function

      • 2.10.4 Finding the maximum using a numerical approach

    • 2.11 Scenario 9: Maximizing two traits simultaneously

      • 2.11.1 General assumptions

      • 2.11.2 Mathematical assumptions

      • 2.11.3 Plotting the fitness function

      • 2.11.4 Finding the maximum using the calculus

      • 2.11.5 Finding the maximum using a numerical approach

    • 2.12 Scenario 10: Two traits may covary but optima are independent

      • 2.12.1 General assumptions

      • 2.12.2 Mathematical assumptions

    • 2.13 Scenario 11: Two traits may be resolved into a single trait

      • 2.13.1 General assumptions

      • 2.13.2 Mathematical assumptions

      • 2.13.3 Plotting the fitness function

      • 2.13.4 Finding the optimum using the calculus

      • 2.13.5 Finding the optimum using a numerical approach

    • 2.14 Scenario 12: The importance of plotting and the utility of brute force

      • 2.14.1 General assumptions

      • 2.14.2 Mathematical assumptions

      • 2.14.3 Plotting the fitness function

      • 2.14.4 Finding the maximum using the calculus

      • 2.14.5 Finding the maximum using a numerical approach

    • 2.15 Scenario 13: Dealing with recursion by brute force

      • 2.15.1 General assumptions

      • 2.15.2 Mathematical assumptions

      • 2.15.3 Plotting the fitness function

      • 2.15.4 Finding the maximum using the calculus

      • 2.15.5 Finding the maximum using a numerical approach

    • 2.16 Scenario 14: Adding a third variable and more

      • 2.16.1 General assumptions

      • 2.16.2 Mathematical assumptions

      • 2.16.3 Plotting the fitness function

      • 2.16.4 Finding the maximum using the calculus

      • 2.16.5 Finding the maximum using a numerical approach

    • 2.17 Some exemplary papers

    • 2.18 MATLAB code

      • 2.18.1 Scenario 1: Plotting the fitness function

      • 2.18.2 Scenario 1: Finding the maximum using the calculus

      • 2.18.3 Scenario 1: Finding the maximum using a numerical approach

      • 2.18.4 Scenario 3: Plotting the fitness function

      • 2.18.5 Scenario 3: Finding the maximum by the calculus

      • 2.18.6 Scenario 3: Finding the maximum using a numerical approach

      • 2.18.7 Scenario 4: Plotting the fitness function

      • 2.18.8 Scenario 4: Finding the maximum using the calculus

      • 2.18.9 Scenario 4: Finding the maximum using a numerical approach

      • 2.18.10 Scenario 5: Plotting the fitness function

      • 2.18.11 Scenario 5: Finding the maximum using the calculus

      • 2.18.12 Scenario 5: Finding the maximum using a numerical approach

      • 2.18.13 Scenario 6: Plotting the fitness function

      • 2.18.14 Scenario 6: Finding the maximum using the calculus

      • 2.18.15 Scenario 6: Finding the maximum using a numerical approach

      • 2.18.16 Scenario 7: Plotting the fitness function

      • 2.18.17 Scenario 7: Finding the maximum using the calculus

      • 2.18.18 Scenario 7: Finding the maximum using numerical methods

      • 2.18.19 Scenario 8: Plotting the fitness function

      • 2.18.20 Scenario 8: Finding the maximum using a numerical approach

      • 2.18.21 Scenario 9: The derivative can also be determined using MATLAB

      • 2.18.22 Scenario 9: Plotting the fitness function

      • 2.18.23 Scenario 9: Finding the maximum using the calculus

      • 2.18.24 Scenario 9: Finding the maximum using a numerical approach

      • 2.18.25 Scenario 11: Plotting the fitness function

      • 2.18.26 Scenario 11: Finding the optimum using the calculus

      • 2.18.27 Scenario 11: Finding the optimum using a numerical approach

      • 2.18.28 Scenario 12: Plotting the fitness function

      • 2.18.29 Scenario 12: Finding the maximum using the calculus

      • 2.18.30 Scenario 12: Finding the maximum using a numerical approach

      • 2.18.31 Scenario 13: Plotting the fitness function

      • 2.18.32 Scenario 13: Finding the maximum using a numerical approach

      • 2.18.33 Scenario 14: Finding the maximum using a numerical approach

  • 3 Invasibility analysis

    • 3.1 Introduction

      • 3.1.1 Age-or stage-structured models

      • 3.1.2 Modeling evolution using the Leslie matrix

      • 3.1.3 Stage-structured models

      • 3.1.4 Adding density-dependence

      • 3.1.5 Estimating fitness

      • 3.1.6 Pairwise invasibility analysis

      • 3.1.7 Elasticity analysis

      • 3.1.8 Multiple invasibility analysis

    • 3.2 Summary of scenarios

    • 3.3 Scenario 1: Comparing approaches

      • 3.3.1 General assumptions

      • 3.3.2 Mathematical assumptions

      • 3.3.3 Solving using the methods of Chapter 2

      • 3.3.4 Solving using the eigenvalue of the Leslie matrix

    • 3.4 Scenario 2: Adding density-dependence

      • 3.4.1 General assumptions

      • 3.4.2 Mathematical assumptions

      • 3.4.3 Solving using R[sub(o)] as the fitness measure

      • 3.4.4 Pairwise invasibility analysis

      • 3.4.5 Elasticity analysis

    • 3.5 Scenario 3: Functional dependence in the Ricker model

      • 3.5.1 General assumptions

      • 3.5.2 Mathematical assumptions

      • 3.5.3 Pairwise invasibility analysis

      • 3.5.4 Elasticity analysis

      • 3.5.5 Multiple invasibility analysis

    • 3.6 Scenario 4: The evolution of reproductive effort

      • 3.6.1 General assumptions

      • 3.6.2 Mathematical assumptions

      • 3.6.3 Pairwise invasibility analysis

      • 3.6.4 Elasticity analysis

    • 3.7 Scenario 5: A two stage model

      • 3.7.1 General assumptions

      • 3.7.2 Mathematical assumptions

      • 3.7.3 Elasticity analysis

      • 3.7.4 Pairwise invasibility analysis

    • 3.8 Scenario 6: A case in which the putative ESS is not stable

      • 3.8.1 General assumptions

      • 3.8.2 Mathematical assumptions

      • 3.8.3 Pairwise invasibility analysis

      • 3.8.4 Elasticity analysis

      • 3.8.5 Multiple invasibility analysis

    • 3.9 Some exemplary papers

  • 4 Genetic models

    • 4.1 Introduction

      • 4.1.1 Population variance components (PVC) models

      • 4.1.2 Individual variance components (IVC) models

      • 4.1.3 Individual locus (IL) models

    • 4.2 Summary of scenarios

    • 4.3 Scenario 1: Stabilizing selection on two traits using a PVC model

      • 4.3.1 General assumptions

      • 4.3.2 Mathematical assumptions

      • 4.3.3 Analysis

    • 4.4 Scenario 2: Stabilizing selection using an IVC model

      • 4.4.1 General assumptions

      • 4.4.2 Mathematical assumptions

      • 4.4.3 Analysis

    • 4.5 Scenario 3: Directional selection using an IVC model

      • 4.5.1 General assumptions

      • 4.5.2 Mathematical assumptions

      • 4.5.3 Analysis

    • 4.6 Scenario 4: Directional selection using an IL model

      • 4.6.1 General assumptions

      • 4.6.2 Mathematical assumptions

      • 4.6.3 Analysis

    • 4.7 Scenario 5: A quantitative genetic analysis of the Ricker model

      • 4.7.1 General assumptions

      • 4.7.2 Mathematical assumptions

      • 4.7.3 Analysis

    • 4.8 Scenario 6: Evolution of two traits using an IVC model

      • 4.8.1 General assumptions

      • 4.8.2 Mathematical assumptions

      • 4.8.3 Analysis

    • 4.9 Scenario 7: Evolution of two traits using an IL model

      • 4.9.1 General assumptions

      • 4.9.2 Mathematical assumptions

      • 4.9.3 Analysis

    • 4.10 Some exemplary papers

  • 5 Game theoretic models

    • 5.1 Introduction

      • 5.1.1 Frequency-independent models

      • 5.1.2 Frequency-dependent models

      • 5.1.3 The size of the population

      • 5.1.4 The mode of inheritance in two-strategy games

      • 5.1.5 The number of different strategies

    • 5.2 Summary of scenarios

    • 5.3 Scenario 1: A frequency-independent game

      • 5.3.1 General assumptions

      • 5.3.2 Mathematical assumptions

      • 5.3.3 Plotting the fitness curves

      • 5.3.4 Finding the ESS using the calculus

      • 5.3.5 Finding the ESS using a numerical approach

    • 5.4 Scenario 2: Hawk-Dove game: a clonal model

      • 5.4.1 General assumptions

      • 5.4.2 Mathematical assumptions

      • 5.4.3 Finding the ESS using a numerical approach

    • 5.5 Scenario 3: Hawk-Dove game: a simple Mendelian model

      • 5.5.1 General assumptions

      • 5.5.2 Mathematical assumptions

      • 5.5.3 A graphical analysis

      • 5.5.4 Finding the ESS using a numerical approach

    • 5.6 Scenario 4: Hawk-Dove game: a quantitative genetic model

      • 5.6.1 General assumptions

      • 5.6.2 Mathematical assumptions

      • 5.6.3 A graphical analysis

      • 5.6.4 Finding the ESS using a numerical approach

    • 5.7 Scenario 5: Rock-Paper-Scissors: a clonal model

      • 5.7.1 General assumptions

      • 5.7.2 Mathematical assumptions

      • 5.7.3 Finding the ESS using a numerical approach

    • 5.8 Scenario 6: Rock-Paper-Scissors: a simple Mendelian model

      • 5.8.1 General assumptions

      • 5.8.2 Mathematical assumptions

      • 5.8.3 A graphical analysis

      • 5.8.4 Finding the ESS using a numerical approach

    • 5.9 Scenario 7: Rock-Paper-Scissors: a quantitative genetics model

      • 5.9.1 General assumptions

      • 5.9.2 Mathematical assumptions

      • 5.9.3 A graphical analysis

      • 5.9.4 Finding the ESS using a numerical approach

    • 5.10 Scenario 8: Frequency-dependence with limited interactions

      • 5.10.1 General assumptions

      • 5.10.2 Mathematical assumptions

      • 5.10.3 Finding the ESS analytically

      • 5.10.4 Finding the ESS using a numerical approach

    • 5.11 Scenario 9: Learning the ESS

      • 5.11.1 General assumptions

      • 5.11.2 Mathematical assumptions

      • 5.11.3 Finding the ESS using a numerical approach

    • 5.12 Some exemplary papers

  • 6 Dynamic programming

    • 6.1 Introduction

      • 6.1.1 General assumptions in the patch-foraging model

      • 6.1.2 Mathematical assumptions in the patch-foraging model

      • 6.1.3 A first look at the model

      • 6.1.4 An algorithm for constructing the decision matrix

      • 6.1.5 Using the decision matrix: individual prediction

      • 6.1.6 Using the decision matrix: expected state

      • 6.1.7 Using the decision and transition density matrices to get expected choices

      • 6.1.8 Adjusting state values to correspond to index values

      • 6.1.9 Linear interpolation to adjust for non-integer state variables

    • 6.2 Summary of scenarios

    • 6.3 Scenario 1: A different terminal fitness

      • 6.3.1 General assumptions

      • 6.3.2 Mathematical assumptions

      • 6.3.3 Outcome chart and expected lifetime fitness function

      • 6.3.4 Calculating the decision matrix

    • 6.4 Scenario 2: To forage or not to forage: when patches become options

      • 6.4.1 General assumptions

      • 6.4.2 Mathematical assumptions

      • 6.4.3 Outcome chart and expected lifetime fitness function

      • 6.4.4 Calculating the decision matrix

    • 6.5 Scenario 3: Testing for equivalent choices, indexing, and interpolation

      • 6.5.1 General assumptions

      • 6.5.2 Mathematical assumptions

      • 6.5.3 Outcome chart and expected lifetime fitness function

      • 6.5.4 Calculating the decision matrix

    • 6.6 Scenario 4: Host choice in parasitoids: fitness decreases with time

      • 6.6.1 General assumptions

      • 6.6.2 Mathematical assumptions

      • 6.6.3 Outcome chart and expected lifetime fitness function

      • 6.6.4 Calculating the decision matrix

      • 6.6.5 Using the decision matrix: individual prediction

    • 6.7 Scenario 5: Optimizing egg and clutch size: dealing with two state variables

      • 6.7.1 General assumptions

      • 6.7.2 Mathematical assumptions

      • 6.7.3 Outcome chart and expected lifetime fitness function

      • 6.7.4 Calculating the decision matrix

    • 6.8 Some exemplary papers

    • 6.9 MATLAB Code

      • 6.9.1 An algorithm for constructing the decision matrix

      • 6.9.2 Using the decision matrix: individual prediction

      • 6.9.3 Using the decision matrix: expected state

      • 6.9.4 Scenario 2: Calculating the decision matrix

      • 6.9.5 Scenario 3: Calculating the decision matrix

      • 6.9.6 Scenario 4: Calculating the decision matrix

      • 6.9.7 Scenario 4: Using the decision matrix: individual prediction

      • 6.9.8 Scenario 5: Calculating the decision matrix

  • Appendix 1

  • Appendix 2

  • References

  • Author Index

    • A

    • B

    • C

    • D

    • E

    • F

    • G

    • H

    • I

    • J

    • K

    • L

    • M

    • N

    • O

    • P

    • Q

    • R

    • S

    • T

    • V

    • W

    • Y

    • Z

  • Subject Index

    • A

    • B

    • C

    • D

    • E

    • F

    • G

    • H

    • I

    • L

    • M

    • N

    • O

    • P

    • Q

    • R

    • S

    • T

    • U

    • V

    • W

    • Z

  • Coding Index

    • A

    • B

    • C

    • D

    • E

    • F

    • H

    • I

    • L

    • M

    • N

    • O

    • P

    • Q

    • R

    • S

    • T

    • U

    • V

    • W

Nội dung

[...]... that the analysis did not divide the results both according to the four-model types and the two-dynamical behaviors Benton and Grant (2000) considered the following “surrogate” measure of fitness: r, R0, and a estimated both with and without density-dependence effects and the average (both arithmetic and geometric) population size, K First, Benton and Grant simulated constant environments and found,... variable cannot be measured, then it is not useful and an alternate approach should be sought 5 As much as possible, write the model incrementally and as a series of modules that can be examined and debugged separately To illustrate these points the next section constructs a model of the evolution of migration in a spatially and temporally heterogeneous environment 1.4 An introduction to modeling in R and... as an integral part of the explanation, has guided the writing of this book The present book is designed to outline how evolutionary questions are formulated and how, in practice, they can be resolved by analytical and numerical methods (the emphasis being on the latter) The general structure of each chapter consists of an introduction, in which the general approach and methods are described, followed... major advantages over MATLAB: first it is free, and second it is a highly sophisticated statistical package Thus a student who learns R can use it to do modeling and to address the statistical questions that will arise following experiments to test such models MATLAB appears to be generally faster than R, except perhaps in the complex statistical analyses On the other hand, MATLAB is not cheap and although... Step 4: Creating space to store the output: c( ), vectors, matrices, etc For any model there will be information that is generated by the program that we will want to analyze at the end of the simulation While it is possible to dynamically allocate space, a better method is to preassign the space at the start of the simulation Information can be stored in a matrix, a vector, an array, a data frame,... information of the same type (e.g., only numerical information) A vector is simply a matrix with a single column or row Examples of a vector and a matrix are as follows: 2 3 1 A:vector ¼4 3 5 5 2 1 6 A:matrix ¼4 2 4 4 8 3 0 25 1 To assign 1, 3, 5 to the vector A.vector we can use the concatenate code c( ) in R and square brackets in MATLAB R CODE: A.vector .

Ngày đăng: 11/06/2014, 05:42

TỪ KHÓA LIÊN QUAN