Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 80 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
80
Dung lượng
0,94 MB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC Đào Xuân Tuấn lu PHƯƠNG PHÁP SỐ GIẢI PHƯƠNG TRÌNH VI PHÂN an n va TUYẾN TÍNH VÀ PHI TUYẾN CẤP HAI p ie gh tn to Mã số: 60 46 01 12 d oa nl w Chuyên ngành: TOÁN ỨNG DỤNG nv a lu an ll fu m oi LUẬN VĂN THẠC SĨ TOÁN HỌC at nh z z gm @ l.c om an Lu Thái Nguyên - 2015 n va ac th si ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC Đào Xuân Tuấn lu an n va PHƯƠNG PHÁP SỐ GIẢI PHƯƠNG TRÌNH VI PHÂN p ie gh tn to TUYẾN TÍNH VÀ PHI TUYẾN CẤP HAI Chuyên ngành: TOÁN ỨNG DỤNG w d oa nl Mã số: 60 46 01 12 nv a lu an ll fu m oi LUẬN VĂN THẠC SĨ TOÁN HỌC at nh z z NGƯỜI HƯỚNG DẪN KHOA HỌC @ gm TS VŨ VINH QUANG l.c om an Lu Thái Nguyên - 2015 n va ac th si i MỤC LỤC MỤC LỤC i LỜI CẢM ƠN iv DANH SÁCH CÁC KÍ HIỆU v DANH SÁCH HÌNH VẼ vi DANH SÁCH BẢNG vii lu an MỞ ĐẦU va Chương 1: MỘT SỐ KIẾN THỨC CƠ BẢN VỀ PHƯƠNG TRÌNH VI PHÂN n p ie gh tn to 1.1 Phương trình vi phân cấp 1.1.1 Bài toán Cauchy định lí tồn nghiệm w 1.1.2 Một số phương pháp tìm nghiệm giải tích d oa nl 1.2 Phương trình vi phân cấp hai 12 1.2.1 Định lí tồn nghiệm 12 a lu nv 1.2.2 Một số phương pháp tìm nghiệm giải tích 13 an ll fu 1.2.2.1 Phương trình khuyết 13 m oi 1.2.2.2 Phương trình tuyến tính cấp hai 14 nh 1.2.2.3 Phương trình vi phân tuyến tính 14 at z 1.2.2.4 Phương pháp biến thiên số 17 z @ gm 1.3 Phương trình vi phân cấp cao 19 l.c 1.3.1 Định lí tồn nghiệm 19 om 1.3.2 Các phương trình giải cầu phương 20 Lu an 1.3.3 Tích phân trung gian – phương trình hạ cấp 23 va 1.3.3.1 Tích phân trung gian 23 n ac th si ii 1.3.3.2 Các trường hợp phương trình hạ cấp nhờ tích phân trung gian 24 1.3.3.3 Phương trình hàm đạo hàm 24 1.3.3.4 Phương trình mà vế trái đạo hàm 25 Chương 2: MỘT SỐ THUẬT TỐN GIẢI SỐ PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH VÀ PHI TUYẾN 26 2.1 Phương pháp sai phân 26 2.1.1 Lưới sai phân 26 lu 2.1.2 Hàm lưới 27 an 2.1.3 Đạo hàm lưới 27 n va p ie gh tn to 2.1.4 Quy ước viết vô bé 27 2.1.5 Công thức Taylor 28 2.1.6 Liên hệ đạo hàm hàm lưới 28 w 2.2 Một số phương pháp giải số phương trình vi phân cấp 30 d oa nl 2.2.1 Thuật toán Euler 30 a lu 2.2.2 Phương pháp Crank_Nicolson 33 nv an 2.2.3 Thuật toán RK4 34 fu ll 2.2.4 Phương pháp đa bước Adams 35 oi m 2.2.5 Phương pháp Euler_Cauchy 37 at nh 2.3 Một số phương pháp số giải toán vi phân cấp hai 37 z z gm @ 2.3.1 Thuật toán truy đuổi đường chéo 37 2.3.2 Phương trình vi phân tuyến tính cấp hai với hệ điều kiện biên 40 l.c om 2.3.3 Phương trình vi phân phi tuyến cấp hai tổng quát với hệ điều kiện đầu 42 an Lu 2.3.3.1 Sơ đồ sai phân dạng Runge_Kutta 42 2.3.3.2 Sơ đồ sai phân Nyström 44 n va ac th si iii Chương 3: MỘT SỐ KẾT QUẢ THỰC NGHIỆM 49 3.1 Các kết thực nghiệm phương trình cấp 49 3.1.1 Thuật toán Euler 49 3.1.2 Thuật toán Euler 51 3.1.3 Thuật toán Euler_Cauchy 52 3.1.4 Thuật toán RK_4 53 3.2 Các kết thực nghiệm phương trình cấp hai 55 lu 3.2.1 Phương trình vi phân tuyến tính cấp hai với hệ điều kiện biên 55 an n va 3.2.2 Phương trình vi phân tuyến tính cấp hai với hệ điều kiện đầu 58 p ie gh tn to KẾT LUẬN 63 TÀI LIỆU THAM KHẢO 64 Phụ lục: MỘT SỐ CHƯƠNG TRÌNH NGUỒN 65 d oa nl w nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an iv LỜI CẢM ƠN Luận văn thực hoàn thành với hướng dẫn, bảo tận tình TS Vũ Vinh Quang – Trường Đại học công nghệ thông tin truyền thông – Đại học Thái Nguyên Tôi xin bày tỏ lịng kính trọng biết ơn sâu sắc đến Thầy Tôi xin trân trọng gửi tới Thầy giáo, Cơ giáo thuộc khoa Tốn – Tin, phòng Đào tạo – Trường Đại học khoa học – Đại học Thái Nguyên Thầy, Cô giáo tham gia giảng dạy khóa cao học 2013 – 2015 lời cám ơn sâu sắc Tôi xin cám ơn Sở giáo dục đào tạo tỉnh Quảng Ninh, Ban giám hiệu, lu an đồng nghiệp Trường THPT Đơng Triều – Quảng Ninh, gia đình, bạn bè, tạo điều n va kiện giúp đỡ, động viên, cổ vũ để tơi hồn thành nhiệm vụ p ie gh tn to Thái Nguyên, ngày 04 tháng 04 năm 2015 Đào Xuân Tuấn Học viên cao học lớp: Tốn A w d oa nl Khóa: 06/2013 – 06/2015 Chuyên ngành: Toán ứng dụng a lu nv Trường ĐH khoa học – ĐH Thái Nguyên an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an v DANH SÁCH CÁC KÍ HIỆU Trong luận văn có sử dụng số kí hiệu sau: W y1, y2 : Định thức Wronsky y1, y 1(x ) : Là nguyên hàm 1(x ) 2 (x ) : Là nguyên hàm 2 (x ) h : Là lưới sai phân x 0, X lu an n va xi : Là nút lưới p ie gh tn to O h : Độ xác sai số tính tốn h : Là bước lưới d oa nl w ui u(x i ), i 0,1, , n : Hàm lưới u * (x ) : Nghiệm nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an vi DANH SÁCH HÌNH VẼ Hình 3.1: Đồ thị nghiệm xấp xỉ theo thuật tốn RK_4 Hình 3.2: Đồ thị nghiệm xấp xỉ theo thuật tốn khử lặp Hình 3.3: Đồ thị nghiệm xấp xỉ theo thuật tốn Nystrưm dạng Hình 3.4: Đồ thị nghiệm xấp xỉ theo thuật tốn Nystrưm dạng lu an n va p ie gh tn to d oa nl w nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an vii DANH SÁCH BẢNG Bảng 2.1: Nyström bậc Bảng 2.2: Phương pháp cho y '' f (x , y ) , Nyström bậc Bảng 2.3: Phương pháp cho y '' f (x , y ) , Nyström bậc Bảng 3.1: Sai số phương pháp ứng với hàm nghiệm lu Bảng 3.2: Sai số phương pháp Euler_2 ứng với hàm nghiệm an Bảng 3.3: Sai số phương pháp Euler_Cauchy ứng với hàm nghiệm n va p ie gh tn to Bảng 3.4: Sai số phương pháp RK_4 ứng với hàm nghiệm Bảng 3.5: Sai số phương pháp khử lặp ứng với hàm nghiệm Bảng 3.6: Sai số phương pháp Nyström dạng ứng với hàm nghiệm w Bảng 3.7: Sai số phương pháp Nyström dạng ứng với hàm nghiệm d oa nl nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an MỞ ĐẦU Phương trình vi phân dạng tuyến tính phi tuyến tính lớp phương trình lý thuyết phương trình vi phân có ứng dụng quan trọng toán thực tế đặc biệt lý thuyết điều khiển ổn định Về mặt lý thuyết tổng quát lớp phương trình nhà toán học nghiên cứu từ lâu Tuy nhiên vấn đề tìm nghiệm giải tích phương trình thực phương trình dạng đặc biệt cịn chủ yếu phải xác định nghiệm xấp xỉ qua phương pháp gần Chính việc nghiên cứu lý thuyết phương pháp gần xây lu dựng chương trình máy tính điện tử tìm nghiệm số lớp phương trình an có ý nghĩa mặt khoa học, mang tính ứng dụng cao n va Mục tiêu nghiên cứu luận văn tìm hiểu phương pháp sai phân đưa p ie gh tn to phương trình vi phân tuyến tính phi tuyến với hệ điều kiện ban đầu khác hệ phương trình sai phân đồng thời nghiên cứu số thuật toán giải gần hệ phương trình sai phân để xác định nghiệm xấp xỉ w phương trình vi phân, sở tiến hành xây dựng hệ thống hàm mẫu mô tả d oa nl thuật tốn ngơn ngữ máy tính, thử nghiệm tính xác chương trình a lu ví dụ cụ thể nv Cấu trúc luận văn gồm chương với nội dung sau: an ll fu Chương 1: Luận văn trình bày số kiến thức phương trình vi phân, oi m số phương pháp tìm nghiệm giải tích lớp phương trình cấp cấp at chương tiếp sau luận văn nh cao Đây kiến thức làm tảng để nghiên cứu nội dung z z @ Chương 2: Trên sở phương pháp sai phân, luận văn trình bày số kết gm nghiên cứu mặt lý thuyết thuật tốn giải số phương trình vi phân l.c cấp với điều kiện ban đầu phương trình vi phân cấp hai với hệ điều kiện biên om Trên sở nghiên cứu thuật tốn giải số phương trình vi phân cấp hai Các kết phân chương luận văn an Lu lý thuyết tảng để xây dựng thuật tốn giải số phương trình vi n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 57 + Giải hệ đại số tuyến tính c u b u 0 a u c u b1u2 1 anun 1 cnun f1 f2 fn theo thuật toán truy đuổi để xác định vetor nghiệm u u 0, u1, , un Bước 5: Xác định sai số, đồ thị nghiệm xấp xỉ lu Kết xây dựng hàm PP _ KHU _ LAP (a, b, 0, 1, 0 , 1, n ) an va Việc đánh giá độ xác thuật tốn cho bảng số liệu sau n p ie gh tn to Bảng 3.5: Sai số phương pháp khử lặp ứng với hàm nghiệm w u * (x ) x sin 2x , x 0,1 0 1, 1 2, 0 2, 1 Sai số phương pháp Lưới sai phân Sai số phương pháp 10 3,0.10-1 400 7,4.10-3 5,9.10-2 500 5,9.10-3 1000 2,9.10-3 10000 2,9.10-4 d oa nl Lưới sai phân nv a lu 50 an 2,9.10-2 200 1,4.10-2 ll fu 100 oi m at nh z z Nhận xét: @ gm Qua kết thực nghiệm thấy thuật tốn khử lặp giải số phương trình vi phân tuyến tính cấp hồn tồn với sai số mặt lý thuyết theo l.c om phương pháp sai phân với sai số O (h ) Lu Thuật toán cho phép giải số phương trình vi phân tuyến tính cấp hai an n va Trong hình 3.2 đồ thị nghiệm xấp xỉ toán ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 58 p(x ) x 3x , q sin(x 4)cos(x 2) 10, f (x ) sin x cos x , 0 1, 1 2, 0 2, 1 lu an n va p ie gh tn to Hình 3.2: Đồ thị nghiệm xấp xỉ theo thuật toán khử lặp Dạng 1: d oa nl w 3.2.2 Phương trình vi phân tuyến tính cấp hai với hệ điều kiện đầu nv a lu u '' f (x , u ), x a,b u(a ) A, u ' (a ) B an ll fu Xuất phát từ sở phương pháp sai phân dạng Nyström, đưa oi m thuật toán giải toán biên dạng với hệ điều kiện ban đầu sau: z Input: a, b, f (x , u ), A, B, n at nh Thuật toán z l.c an n va Bước 3: Với i 0,1, , n Lu Bước 2: Xuất phát u(0) A; v(0) B om b a n gm Bước 1: Tính h @ Output: u (u 0, u1, , un ) ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 59 Tính giá trị: x i a ih; k1 f (x i , ui ); lu v k h k2 f (x i , ui h i h ); 2 k k f (x i h, ui hvi h 2 ); k k ui 1 ui hvi h ; k 4k2 k vi 1 vi h ; an n va Bước 4: Xác định sai số, vẽ đồ thị nghiệm p ie gh tn to Kết thuật toán xây dựng hàm Cap_hai_01.m Việc đánh giá độ xác thuật toán cho bảng số liệu sau Bảng 3.6: Sai số phương pháp Nyström dạng ứng với hàm nghiệm d oa nl w Lưới sai phân Lưới sai phân Sai số phương pháp 400 3,9.10-12 500 1,5.10-12 1000 9,7.10-14 10000 1,9.10-14 2,0.10-5 nv an 1,6.10-8 ll fu 50 Sai số phương pháp a lu 10 u * (x ) x sin 2x, x 0,1 m 1,0.10-9 200 6,2.10-11 oi 100 at nh z z @ gm Nhận xét: l.c Qua kết thực nghiệm thấy thuật tốn Nystrưm dạng giải số om phương trình vi phân phi tuyến cấp với hệ điều kiện ban đầu dạng khuyết đạt kết an Lu sai số tương đương với O (h ) n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 60 Thuật toán cho phép giải số phương trình vi phân phi tuyến cấp hai dạng khuyết Trong hình 3.3 đồ thị nghiệm xấp xỉ toán dạng với hàm vế phải hệ điều kiện đầu f (x, u ) x x s inx u 2, u(0) 4, u '(0) 2, x 0,1 lu an n va p ie gh tn to Dạng 2: d oa nl w Hình 3.3: Đồ thị nghiệm xấp xỉ theo thuật tốn Nystrưm dạng nv a lu u '' f (x , u, u ' ), x a,b u(a ) A, u ' (a ) B an ll fu Xuất phát từ sở phương pháp sai phân dạng Nystrưm, đưa thuật oi m tốn giải toán biên dạng với hệ điều kiện ban đầu sau: nh Thuật toán at gm l.c n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn an Bước 3: Với i 0,1, , n Lu Bước 2: Xuất phát u(0) A; v(0) B om b a n @ Bước 1: Tính h z Output: u (u 0, u1, , un ) z Input: a, b, f (x , u, u ' ), A, B, n si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 61 Tính giá trị: x i a ih; p1 vi ; k1 f (x i , ui , vi ); k1 p k h ; k2 f (x i , ui h i , vi h ); 2 2 k2 p k h p3 vi h ; k f (x i , ui h , vi h ); 2 2 p4 vi hk ; k4 f (x i h, ui hp3, vi k ); h ui 1 ui (p1 2p2 2p3 p4 ); h vi 1 vi (k1 2k2 2k3 k ); p2 vi h lu an n va Bước 4: Xác định sai số, vẽ đồ thị nghiệm p ie gh tn to Kết thuật toán xây dựng hàm Cap_hai_2.m Việc đánh giá độ xác thuật tốn cho bảng số liệu sau w Bảng 3.7: Sai số phương pháp Nyström dạng ứng với hàm nghiệm d oa nl nv a lu u *(x ) x sin x , x 0,1 , u(0) 0, u '(0) 0, f (x , u, u ' ) (42x 7x )s inx (14x x )cos x u u ' Sai số phương pháp 10 1,0.10-4 50 2,6.10-7 100 1,6.10-8 200 1,0.10-9 an Lưới sai phân Sai số phương pháp 400 6,3.10-11 500 2,6.10-11 1000 1,6.10-12 ll fu Lưới sai phân oi m at nh z z 2,8.10-15 gm @ 10000 l.c om Nhận xét: an Lu Qua kết thực nghiệm thấy thuật tốn Nystrưm dạng giải số phương trình vi phân phi tuyến cấp với hệ điều kiện ban đầu dạng tổng quát đạt kết n ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn va sai số tương đương với O (h ) si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 62 Thuật toán cho phép giải số phương trình vi phân phi tuyến cấp hai dạng tổng quát Trong hình 3.4 đồ thị nghiệm xấp xỉ toán với hàm vế phải điều kiện ban đầu cho trước ' f (x , u, u ' ) x e x u e u , u(0) 0, u ' (0) 1, x 0,1 lu an n va p ie gh tn to d oa nl w Hình 3.4: Đồ thị nghiệm xấp xỉ theo thuật tốn Nystrưm dạng nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 63 KẾT LUẬN Nội dung luận văn trình bày số kết vấn đề giải số phương trình vi phân tuyến tính phi tuyến tính cấp hai, kết đạt bao gồm: Trình bày tóm tắt số kiến thức phương trình vi phân cấp cấp cao, định lý tồn nghiệm, lớp phương trình phương pháp tìm nghiệm giải tích phương trình tương ứng Trên sở phương pháp sai phân, luận văn trình bày lược đồ sai phân tìm nghiệm số phương trình vi phân cấp với điều kiện ban đầu, lu phương trình vi phân tuyến tính cấp hai với hệ điều kiện biên tổng quát đưa an n va sơ đồ sai phân cho phương trình vi phân phi tuyến tính cấp hai Đối với lược đồ sai phân, luận văn đưa vấn đề đánh giá sai số phương pháp tương p ie gh tn to ứng Trên sở kết đưa chương 2, luận văn đưa kết cài đặt thuật toán giải số máy tính điện tử, đánh giá tính đắn thuật w tốn thơng qua việc đánh giá sai số d oa nl Hướng phát triển thời gian tới đề tài tiếp tục nghiên cứu sâu a lu phương pháp gần xây dựng chương trình máy tính điện tử tìm nghiệm nv số lớp phương trình lý thuyết phương trình vi phân có ứng dụng an ll fu quan trọng toán thực tế đặc biệt lý thuyết điều khiển ổn định có ý oi m nghĩa mặt khoa học, mang tính ứng dụng cao nh Qua thời gian thực luận văn tốt nghiệp, thân nâng cao khả at làm việc, nghiên cứu độc lập khả tìm hiểu, dịch, phân tích tổng hợp z z tài liệu tiếng nước @ gm Tuy nhiên khuôn khổ thời gian nghiên cứu không nhiều, nội dung l.c luận văn không tránh khỏi sai sót nội dung hình thức Rất mong om nhận ý kiến đóng góp thầy cô giáo, đồng nghiệp để luận văn an Lu hoàn thiện n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 64 TÀI LIỆU THAM KHẢO [1] Phạm Kỳ Anh (2000), Giải tích số, Nhà xuất Đại học Quốc gia Hà Nội [2] Tạ Văn Đĩnh (2005), Phương pháp sai phân phương pháp phần tử hữu hạn, Nhà xuất Khoa học Kỹ thuật [3] Trần Văn Nhung (1978), Phương trình vi phân, Nhà xuất Giáo dục [4] Haier E, Norsett S P, Wanner G (1993), Runge - Kutta and Extrapolation Methods,Solving Ordinary Differential Equations NonstiffProblem, XV, 528 p lu Softcover ISBN: 978-3-642-051 63-0 an [5] Marchuk G I (1982), Methods ofNumerical Mathematics, Springer, New n va York p ie gh tn to [6] Samarskij A, Nikolaev E (1989), Numerical Methods for Grid Equations, Vol 2, Birkhauser, Basel d oa nl w nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 65 lu an n va Phụ lục MỘT SỐ CHƯƠNG TRÌNH NGUỒN Thuật tốn truy đuổi đường chéo function u=truyduoi(a,b,c,f,n) alpha(1)=-b(1)/c(1);beta(1)=f(1)/c(1); %Buoc xuoi for k=2:n-1; alpha(k)=-b(k)/(a(k)*alpha(k-1)+c(k)); beta(k)=(f(k)-a(k)*beta(k-1))/(a(k)*alpha(k-1)+c(k)); end; %Buoc nguoc u(n)=(f(n)-a(n)*beta(n-1))/(a(n)*alpha(n-1)+c(n)); for k=(n-1):-1:1; u(k)=alpha(k)*u(k+1)+beta(k); end; %%%%% Phương pháp Euler function euler_1=euler_1(a,b,n) clc; y(1)=u(a); h=(b-a)/n; % Tinh nghiem dung for i=0:n; x(i+1)=a+i*h; ud(i+1)=u(x(i+1)); end; for i=0:n-1; x(i+1)=a+i*h; y(i+2)=y(i+1)+h*f(x(i+1),y(i+1)); end; % Xac dinh sai so ss=0; for i=0:n; if ssepxilon; z1=y(i+1)+h*(f(x(i+1),y(i+1))+f(x(i+1)+h,z0))/2; z0=z1; end; y(i+2)=z1; end; p ie gh tn to d oa nl w nv a lu an ll fu oi m at nh z z gm @ l.c om an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 67 lu an n va % Xac dinh sai so ss=0; for i=0:n; if ss