Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 38 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
38
Dung lượng
405,4 KB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THỊ GIANG lu an n va p ie gh tn to VỀ TỔNG GAUSS VÀ MỘT SỐ ỨNG DỤNG d oa nl w ll u nf va an lu oi m LUẬN VĂN THẠC SĨ TOÁN HỌC z at nh z m co l gm @ an Lu THÁI NGUYÊN - 2019 n va ac th si ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THỊ GIANG lu an va n VỀ TỔNG GAUSS VÀ MỘT SỐ ỨNG DỤNG p ie gh tn to oa nl w Chuyên ngành: Phương pháp Toán sơ cấp d Mã số: 46 01 13 va an lu ll u nf LUẬN VĂN THẠC SĨ TOÁN HỌC oi m z at nh NGƯỜI HƯỚNG DẪN KHOA HỌC z TS Nguyễn Duy Tân m co l gm @ an Lu n va THÁI NGUYÊN - 2019 ac th si i Mục lục Mở đầu Chương Một số kiến thức chuẩn bị lu an n va 1.1 Ký hiệu Legendre 1.2 Một số kiến thức chuẩn bị khác 2.1 gh tn to Chương Tổng Gauss bậc hai 10 Giá trị tuyệt đối tổng Gauss bậc hai 10 Dấu tổng Gauss bậc hai 13 2.3 Mở rộng lên modulo hợp số lẻ 21 p ie 2.2 w 26 oa nl Chương Một vài ứng dụng tổng Gauss Luật thuận nghịch bậc hai 26 3.2 Một số toán lượng giác liên quan 29 an lu lm ul Tài liệu tham khảo 34 nf va Kết luận d 3.1 35 z at nh oi z m co l gm @ an Lu n va ac th si Mở đầu Tổng Gauss loại tổng gồm hữu hạn đơn vị Gauss nghiên cứu tổng Gauss bậc hai, ứng dụng chúng nghiên cứu luật thuận nghịch bậc hai lu an Mục tiêu luận văn tìm hiểu tổng Gauss bậc hai số ứng dụng n va liên quan Ngoài phần Mở đầu, Kết luận Tài liệu tham khảo, bố cục luận văn gh tn to chia làm ba chương ie Chương Một số kiến thức chuẩn bị p Chương Tổng Gauss bậc hai w Chương Một vài ứng dụng tổng Gauss oa nl Thái Nguyên, tháng năm 2019 d Người viết luận văn nf va an lu Nguyễn Thị Giang z at nh oi lm ul z m co l gm @ an Lu n va ac th si Chương Một số kiến thức chuẩn bị lu Trong chương này, chúng tơi trình bày số kiến thức cần thiết an trình xây dựng định nghĩa tổng Gauss khái niệm ký hiệu Legendre, định lý va n Euler, định lý Fermat, nguyên thủy, thặng dư bậc hai, Các kiến thức gh tn to phần tham khảo chủ yếu từ tài liệu [3] p ie 1.1 Ký hiệu Legendre nl w Định nghĩa 1.1.1 ([3]) Nếu a, b, m ∈ Z m 6= 0, ta nói a đồng dư với oa b modulo m m ước b − a Mối quan hệ ký hiệu a ≡ b d (mod m) Kí hiệu a 6≡ b (mod m) có nghĩa a khơng đồng dư với b modulo m an lu nf va Ví dụ, | 25 − 1, ta có 25 ≡ (mod 4) Vì | − 10, ta có ≡ 10 (mod 6) Vì | 10 − (−4), ta có 10 ≡ −4 (mod 7) Vì - −7 − 2, ta có −7 6≡ (mod 5) lm ul Định nghĩa 1.1.2 ([3]) Ta nói hai số nguyên a b nguyên tố z at nh oi ước chung chúng ±1 Định nghĩa 1.1.3 ([3]) Cho n ∈ Z+ , hàm φ Euler định nghĩa φ(n) z số số nguyên dương nhỏ n mà nguyên tố với n, tức @ gm l φ(n) = |{x ∈ Z : ≤ x ≤ n, (x, n) = 1}| m co Ví dụ, φ(1) = 1, φ(5) = |{1, 2, 3, 4}| = 4, φ(6) = |{1, 5}| = 2, φ(9) = |{1, 2, 4, 5, 7, 8}| = Nếu p số nguyên tố rõ ràng tất số 1, 2, , p−1 nguyên an Lu tố với p nên φ(p) = p − n va ac th si Định lý 1.1.4 (Định lý Euler, [3]) Cho a, m ∈ Z với m > Nếu (a, m) = aφ(m) ≡ (mod m) Chứng minh Gọi r1 , r2 , , rφ(m) φ(m) số nguyên dương khác không lớn m cho (ri , m) = 1, i = 1, 2, , φ(m) Xét φ(m) số nguyên r1 a, r2 a, , rφ(m) a Chú ý (ri a, m) = 1, i = 1, 2, , φ(m) (Nếu (ri a, m) > với i tồn ước nguyên tố p (ri a, m) p | ri a p | m Bây p | ri a kéo theo p | ri p | a nên ta có p | ri p | m ta có p | a p | m, điều (ri , m) = (a, m) = 1.) Ngồi ra, ý khơng có hai số dãy số r1 a, r2 a, , rφ(m) a đồng dư với (Vì (a, m) = 1, tồn nghịch đảo a modulo m, ký hiệu a0 Do đó, ri a ≡ rj a (mod m) với i 6= j lu ri aa0 ≡ rj aa0 (mod m), điều không thể) Nên thặng dư không âm nhỏ an modulo m số nguyên r1 a, r2 a, , rφ(m)a theo thứ tự tăng dần va n r1 , r2 , , φ(m) Khi đó, ta có to (mod m) gh tn (r1 a)(r2 a) · · · (rφ(m) a) ≡ r1 r2 · · · rφ(m) p ie Hay Kéo theo nl w m | (aφ(m) r1 r2 · · · rφ(m) ) − r1 r2 · · · rφ(m) d oa m | r1 r2 · · · rφ(m) × (aφ(m) − 1) nf va an lu Vì (r1 r2 · · · rφ(m) , m) = 1, ta có m | (aφ(m) − 1) lm ul aφ(m) ≡ (mod m), điều phải chứng minh z at nh oi Định lý 1.1.5 (Định lý Fermat nhỏ, [3]) Cho p số nguyên tố cho a ∈ Z Nếu p - a ap−1 ≡ (mod p) z Chứng minh Xét p − số nguyên xác định a, 2a, 3a, , (p − 1)a Ta có p - @ gm ia, i = 1, 2, , p − Chú ý khơng có số p − số nguyên bên l đồng dư modulo p (Vì p - a, tồn nghịch đảo a modulo p, ký hiệu a0 Nếu co ia ≡ ja (mod p) với i 6= j iaa0 = jaa0 (mod p), từ i ≡ j (mod p), vô lý) Nên m thặng dư không âm bé modulo p số nguyên a, 2a, 3a, , (p − 1)a (mod p), n va (a)(2a)(3a) · · · ((p − 1)a) ≡ (1)(2)(3) · · · (p − 1) an Lu theo tứ tự tăng dần 1, 2, 3, , p − Khi đó, ac th si hay tương đương ap−1 (p − 1)! ≡ (p − 1)! (mod p) Theo định lý Wilson, ta có (p − 1)! ≡ −1 (mod p) nên đồng dư thức bên trở thành −ap−1 ≡ −1 (mod p), hay tương đương với ap−1 ≡ (mod p), điều phải chứng minh Định nghĩa 1.1.6 ([3]) Cho a, n ∈ Z Số a gọi nguyên thủy modulo n a n nguyên tố φ(n) số nguyên dương bé cho aφ(n) ≡ (mod n) lu an Ví dụ, nguyên thủy modulo φ(7) = số nguyên dương x va bé để 3x ≡ (mod 7) Thật vậy, 31 ≡ (mod 7), 32 ≡ (mod 7), 33 ≡ n (mod 7), 34 ≡ (mod 7), 35 ≡ (mod 7), 36 ≡ (mod 7) Tương tự, ta có tn to nguyên thủy modulo 13 không nguyên thủy modulo 23 ≡ ie gh (mod 7) φ(7) = > p Mệnh đề 1.1.7 ([3]) Nếu m ∈ Z+ có nguyên thủy (a, m) = a w thặng dư lũy thừa n modulo m aφ(m)/d ≡ (mod m), oa nl d = (n, φ(m)) d Chứng minh Gọi g nguyên thủy modulo m a = g b , x = g y Khi lu nf va an phương trình đồng dư xn ≡ a (mod m) tương đương với g nb ≡ g b (mod m), nên tương đương với ny ≡ b (mod φ(m)) Phương trình có nghiệm d nghiệm z at nh oi lm ul d | b Ngoài ra, ý phương trình đồng dư có nghiệm có Nếu d | b aφ(m)/d ≡ g bφ(m)/d ≡ (mod m) Ngược lại, aφ(m)/d ≡ (mod m) g bφ(m)/d ≡ (mod m), điều kéo theo φ(m) ước bφ(m)/d z hay d | b Điều phải chứng minh @ gm Nhận xét 1.1.8 Chứng minh mệnh đề cịn kéo theo thơng tin bổ co l sung Nếu xn ≡ a (mod m) có nghiệm có (n, φ(m)) nghiệm m Mệnh đề 1.1.9 ([3]) Nếu p số nguyên tố lẻ, p - a p - n, phương an Lu trình xn ≡ a (mod p) có nghiệm phương trình xn ≡ a (mod pe ) có nghiệm với e ≥ Tất phương trình đồng dư có số nghiệm n va ac th si Chứng minh Nếu n = 1, kết luận tầm thường, nên ta giả sử n ≥ Giả sử xn ≡ a (mod pe ) giải phương trình Gọi x0 nghiệm đặt x1 = x0 + bpe Tính tốn ta xn1 ≡ xn0 + nbpe xn−1 (mod pe+1 ) Ta cần giải phương trình xn1 ≡ a (mod pe+1 ) Việc tương đương với tìm số nguyên b cho nx0n−1 b ≡ ((a − xb0 )/p2 ) (mod p) Chú ý (a − xn0 )/pe số nguyên p - nxn−1 Do phương trình có lu nghiệm theo b, với giá trị b, xn1 n ≡ a (mod pe+1 ) an Nếu xn ≡ a (mod p) khơng có nghiệm, xn ≡ a (mod pe ) khơng có nghiệm va n Mặt khác, xn ≡ a (mod p) có nghiệm tất phương trình xn ≡ a tn to (mod pe ) có nghiệm Dựa theo nhận xét sau Mệnh đề 1.1.7 số nghiệm gh xn ≡ a (mod pe ) (n, φ(pe )) miễn phương trình có nghiệm Nếu p - n, dễ thấy p ie (n, φ(p)) = (n, φ(pe )) với e ≥ Điều phải chứng minh w Mệnh đề 1.1.10 ([3]) Cho 2l lũy thừa cao ước n Giả sử oa nl a lẻ phương trình xn ≡ a (mod 22l+1 ) có nghiệm Khi đó, phương trình xn ≡ a (mod 2e ) có nghiệm với e ≥ 2l + (và với e ≥ 1) Ngồi ra, tất d an lu phương trình đồng dư có số nghiệm nf va Định nghĩa 1.1.11 ([3]) Giả sử a, m ∈ Z, m 6= (a, m) = Số a gọi thặng dư bậc hai modulo m phương trình đồng dư x2 ≡ a (mod m) có lm ul nghiệm Nếu ngược lại, a gọi phi thặng dư bậc hai modulo m z at nh oi Ví dụ 1.1.12 Ta có thặng dư bậc hai modulo khơng Thật ra, 12 , 22 , 32 , 42 , 52 , 62 đồng dư với 1, 4, 2, 2, 4, modulo Do đó, 1, thặng dư bậc hai modulo 3, 5, phi thặng dư bậc hai modulo z @ gm Mục tiêu phần trả lời câu hỏi phương trình l đồng dư bậc hai x2 ≡ a (mod m) có nghiệm Mệnh đề sau cho cách xác định m co số nguyên cho trước thặng dư bậc hai modulo m an Lu Mệnh đề 1.1.13 ([3]) Cho m = 2e pe11 · · · pel l phân tích thừa số nguyên tố m giả sử (a, m) = Khi x2 ≡ a (mod m) có nghiệm điều n va kiện sau thỏa mãn: ac th si (a) Nếu e = a ≡ (mod 4) Nếu e ≥ a ≡ (mod 8) (b) Với i ta có a(pi −1)/2 ≡ (mod pi ) Chứng minh Theo định lý thặng dư Trung Hoa phương trình đồng dư x2 ≡ a (mod p) tương đương với hệ phương trình x2 ≡ a (mod 2e ), x2 ≡ a (mod pe11 ), , xl ≡ a (mod pel l ) Xét đồng dư thức x2 ≡ a (mod 2e ) Số thặng dư bậc hai modulo thặng dư bậc hai modulo Do ta có tính giải a ≡ (mod 4) e = a ≡ (mod 8) e = Áp dụng [3, Mệnh đề 4.2.4] ta có x2 ≡ a (mod 8) có nghiệm x2 ≡ a (mod 2e ) có lu nghiệm với e ≥ an va Xét x2 ≡ a (mod pei i ) Vì (2, pi ) = từ [3, Mệnh đề 4.2.3] suy phương trình n đồng dư có nghiệm phương trình x2 ≡ a (mod pi ) có nghiệm tn to Áp dụng Mệnh đề 1.1.7 với n = 2, m = p d = (n, φ(m)) = (2, p − 1) = 2, ta gh thu phương trình x2 ≡ a (mod pi ) có nghiệm a(pi −1)/2 ≡ p ie (mod pi ) Kết rút gọn phương trình thặng dư bậc hai câu hỏi tương ứng w oa nl modulo số nguyên tố Trong phần sau đây, ký hiệu p số nguyên tố d Định nghĩa 1.1.14 ([3]) Cho p số nguyên tố lẻ cho a ∈ Z với p - a lu = −1, lm ul p nf va an Ký hiệu Legendre, viết (a/p), xác định ( 1, a thặng dư bậc hai modulo p a a phi thặng dư bậc hai modulo p z at nh oi Ta quy ước thêm p | a a p = z Ví dụ 1.1.15 Theo Ví dụ 1.1.12, ta có 1, 2, thặng dư bậc hai modulo (3/7) = −1 = (5/7) = (6/7) l gm @ nên (2/7) = = (1/7) = (4/7), 3, phi thặng dư bậc hai modulo nên m co Theo định nghĩa, ký hiệu Legendre (a/p) a có thặng dư bậc hai modulo p hay khơng Nói cách khác, ký hiệu Legendre (a/p) ghi lại phương trình an Lu đồng dư bậc hai x2 ≡ a (mod p) có giải hay khơng Ký hiệu Legendre n va công cụ thuận tiện để thảo luận thặng dư bậc hai ac th si Mệnh đề 1.1.16 ([3]) (a) a(p−1)/2 ≡ (a/p) (mod p) (b) (ab/p) = (a/p)(b/p) (c) Nếu a ≡ b (mod p) (a/p) = (b/p) Chứng minh Nếu p ước a b, tất kết luận tầm thường Giả sử p - a p - b Ta biết ap−1 ≡ (mod p), (a(p−1)/2 + 1)(a(p−1)/2 − 1) = ap−1 − ≡ (mod p) lu an Suy a(p−1)/2 ≡ ±1 (mod p) Theo Mệnh đề 1.1.13, ta có a(p−1)/2 ≡ (mod p) n va a thặng dư bậc hai modulo p Điều chứng minh (a) tn to Để chứng minh (b) ta áp dụng phần (a) Ta có (mod p) p ie gh (ab)(p−1)/2 ≡ (ab/p) d oa Do nl w (ab)(p−1)/2 ≡ a(p−1)/2 b(p−1)/2 ≡ (a/p)(b/p) an lu (ab/p) = (a/p)(b/p) nf va Phần (c) suy trực tiếp từ định nghĩa modulo p z at nh oi lm ul Hệ 1.1.17 Số thặng dư bậc hai modulo p số phi thặng dư bậc hai Hệ 1.1.18 Tích hai thặng dư bậc hai thặng dư bậc hai, tích hai phi thặng dư bậc hai thặng dư bậc hai, tích thặng dư bậc z hai với phi thặng dư bậc hai phi thặng dư bậc hai l gm @ Hệ 1.1.19 (−1)(p−1)/2 = (−1/p) Hệ đặc biệt thú vị Mọi số nguyên lẻ có dạng 4k + 4k + Sử co dụng kết ta phát biểu Hệ 1.1.19 sau: x2 ≡ −1 (mod p) m an Lu có nghiệm p có dạng 4k + Do −1 thặng dư bậc hai số nguyên tố 5, 13, 17, 29, phi thặng dư bậc hai số nguyên tố n va 3, 7, 11, 19, ac th si 21 2.3 Mở rộng lên modulo hợp số lẻ Đầu tiên, ta có mệnh đề sau Mệnh đề 2.3.1 g= p X t t=0 p t ζ = p−1 X ζt t=0 Chứng minh.Sốnghiệm (modulo p) phương trình đồng dư x2 ≡ k (mod p) k + Do p lu p−1 X an ζt = t=0 n va to = p−1 X k=0 p−1 X gh tn k=0 (Vì Pp−1 k 1+ k ζ + k p ζk p−1 X k k=0 p ζ k = g = 0.) Ta có điều phải chứng minh p ie k=0 ζ w Ví dụ 2.3.2 (a) Với p = ζ = e2πi/5 , ta có oa nl X ζ t = + ζ + ζ + ζ + ζ 16 d t=0 lu nf va an = + ζ + ζ4 + ζ4 + ζ lm ul + ζ + ζ + ζ + ζ = = ζ + ζ − ζ − ζ = g, X t=0 z at nh oi (b) Với p = ζ = e2πi/7 , ta có ζ t = + ζ + ζ + ζ + ζ 16 + ζ 25 + ζ 36 z gm @ = + ζ + ζ4 + ζ2 + ζ2 + ζ4 + ζ = ζ + ζ + ζ − ζ − ζ − ζ = g, m co l + ζ + ζ + ζ + ζ + ζ + ζ = rộng lên cho trường hợp n số lẻ sau an Lu Chú ý tổng bên phải đẳng thức mệnh đề mở n va ac th si 22 Đặt ε = e 2πi n với số nguyên a, ta đặt G(a, n) = n−1 X e2πit a/n t=0 Định lý sau coi mở rộng Định lý 2.2.1 cho tổng Gauss với modulo lẻ Định lý 2.3.3 Cho n số nguyên dương lẻ Khi (√ n−1 X n n ≡ (mod 4) 2πit /n G(1, n) = e = √ i n t=0 n ≡ (mod 4) lu Chứng minh Xét ma trận cấp n an n va M = (εkl ) với k = 0, 1, , n − 1; l = 0, 1, , n − gh tn to Gọi ξ1 , ξ2 , , ξn nghiệm phương trình đặc trưng M , tr M = S = n−1 X ε kk = n X ie ξr r=1 p k=0 oa nl w (Ở S = G(1, n).) Ta có εkm+ml d M2 = ! n−1 X m=0 ! ε(k+l)m = (sk+l ) , m=0 nf va an lu = n−1 X ( εjm = lm ul sj = n−1 X m=0 (M )2 = n | j ngược lại z at nh oi Suy n n−1 X ! = n2 · ekl sk+m · sm+l m=0 z m=0 co m=0 s2k+m = n2 l sk+m · sm+l = n−1 X gm n−1 X @ Nếu k = l, n ước k + m với m, nên m Nếu k 6= l, khơng đồng thời xảy n | k + m n | m + l Khi đó, n va m=0 sk+m · sm+l = an Lu n−1 X ac th si 23 (M )2 có hàm đặc trưng |ξ · ekl − n2 · ekl | = (ξ − n2 )n Do đó, (M )2 có n nghiệm phương trình đặc trưng n2 Ngoài ra, (M )2 có ξr4 nghiệm phương √ trình đặc trưng, nên ξr = iar n, ar = 0, 1, √ Giả sử ia n (a = 0, 1, 2, 3) có bội ma , S= n X √ ξr = n(m0 − m2 + i(m1 − m3 )) r=1 Ta có |S| = S · S = n−1 X e 2πi (s2 −t2 ) n = lu an = e 2πi ((s+t)2 −t2 ) n s,t s,t=0 X X e 2πi (s2 +2st) n = n va s,t n−1 X e 2πi s n · s=0 n−1 X e 4πis t n t=0 n−1 X gh tn to Ta thấy ( e 4πis t n = n | 2s, tức n | s ngược lại p ie t=0 n w Suy s = |S | = n Khi đó, d Nên oa nl (m0 − m2 )2 + (m1 − m3 )2 = lu nf va an m0 − m2 = 0, m1 − m3 = ±1 m0 − m2 = ±1, m1 − m3 = √ Khi đó, S = uv · n, u = ±1, v = i Ngồi ra, M có vết lm ul n X ξr2 = n = n(m0 − m1 + m2 − m3 ) z at nh oi r=1 z Do đó, ta có phương trình m0 − m1 + m2 − m3 = m + m + m + m = n m0 + im1 − m2 + im3 = uv − m co m0 + im1 − m2 − im3 = uv l gm @ ( 4m2 = n + − u(v + v −1 ) n va 2(m1 − m3 ) = ui(v −1 − v) an Lu Ta thu ac th si 24 Vì m2 số nguyên nên ( v= n ≡ (mod 4) i n ≡ (mod 4) Do đó, ( m1 − m3 = n ≡ (mod 4) v n ≡ (mod 4) ( 2m2 = n+1 n+1 −u n ≡ (mod 4) n ≡ (mod 4) lu Cuối cùng, ta phải chứng minh u = việc tính định thức M theo hai cách an va |M | = n Y n n n ξr = n im1 −2m2 −m3 = n iu− n+1 n = n ui · i− n+1 to r=1 tn n = n ui 1−n n = n ui n2 −n n = n ui n(n−1) gh p ie Ngồi ra, ta có d oa nl w 1 · · · n−1 Y ε · · · ε |M | = = (εk − εl )