Study on biological characteristics of beet armyworm spodoptera exigua (lepidoptera noctuidae) on green onion

78 2 0
Study on biological characteristics of beet armyworm spodoptera exigua (lepidoptera noctuidae) on green onion

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE FACULTY OF AGRONOMY UNDERGRADUATE THESIS TITLE: “STUDY ON BIOLOGICAL AND ECOLOGICAL CHARACTERISTICS OF BEET ARMYWORM SPODOPTERA EXIGUA (LEPIDOPTERA: NOCTUIDAE) ON GREEN ONION” Student : Vu Thi Giang Code : 621749 Class : K62KHCTT Supervisor : Ph.D Pham Thi Hieu Department: Entomology Hanoi, 2022 DECLARATION I guarantee that this graduation thesis is completed by my awareness All assistance in the implementation of this thesis has been acknowledged and the information cited in the thesis has been indicated I take full responsibility for the report Hanoi, / / 2022 Student VU THI GIANG i ACKNOWLEDGEMENT In order to complete the graduation thesis, in addition to my own efforts, I have received enthusiastic help and guidance from teachers, and the care of family and friends First of all, I would like to express my sincere gratitude to my supervisor PhD PHAM THI HIEU, Department of Entomology, Vietnam National University of Agriculture directly instructed me wholeheartedly and helped me in the process of completing and completing the thesis I would like to express my sincere thanks to all the teachers of the Department of Entonitology, the Vietnam National University of Agriculture for their interest, in creating the best conditions for me to implement the topic Finally, I would like to thank my family and friends who have always supported and encouraged me throughout the learning and implementation process Hanoi, / / , 2022 Students VU THI GIANG ii INDEX DECLARATION i ACKNOWLEDGEMENT ii INDEX iii LIST OF TABLES v LIST OF FIGURES vi ABSTRACT vii I INTRODUCTION 1.1 Background 1.2 The objects and requirement 1.2.1 The objects 1.2.2 Requirement II LITERATURE REVIEW 2.1 The situation of Spodoptera exigua research in the world 2.1.1 The distribution of Spodoptera exigua 2.1.2 Biological characteristic of beet armyworm Spodoptera exigua 2.1.3 Ecological characteristics of beet armyworm Spodoptera exigua 2.1.4 Beet armyworm Spodoptera exigua management 14 2.2 The situation of Spodoptera exigua research in Vietnam 16 2.2.1 The distribution of Spodoptera exigua 16 2.2.2 Biological characteristics of the beet armyworm Spodoptera exigua 18 2.2.3 Ecological characteristics of beet armyworm Spodoptera exigua 19 III MATERIAL AND METHODOLOGY 21 3.1 Material 21 3.2 Location and time research 21 3.3 Research Content 21 3.4 Methodology 22 3.4.1 Methods of morphological and biological of beet armyworm 22 iii 3.4.2 Methods of temperature effected on ecology characteristic of beet armyworm Spodoptera exigua 26 3.4.3 Methods of food consumption rate of larvae beet armyworm Spodoptera exigua 26 3.4.4 Methods of the oviposition behaviour of Spodoptera exigua 27 3.5 Statistical analysis 28 IV RESULTS AND DISCUSSION 29 4.1 Morphological and biological characteristics of beet armyworm 29 4.2 The effect of temperature on the ecology characteristic of beet armyworm Spodoptera exigua 40 4.3 The food consumption rate of larvae beet armyworm 46 4.4 The oviposition behaviour of Spodoptera exigua 47 V CONCLUSIONS AND SUGGESTIONS 48 REFERENCE 49 iv LIST OF TABLES Table 4.1 The width of head capsule and the width, the length (Mean±SE) of larvae beet armyworm 30 Table 4.2 The length, width (cm) and wight (mg) (Mean± SE) of pupae Spodoptera exigua at two different 36 Table 4.3 The length, width (cm) of the adult moth Spodoptera exigua at two different temperatures 38 Table 4.4 The mean duration (days) of the development stage of beet armyworm Spodoptera exigua when reared on two different temperatures 40 Table 4.5 The mortality rate of Spodoptera exigua at two different temperatures 42 Table 4.6 The mean longevity and life span (days) of adult moth Spodoptera exigua when reared on two different temperatures 43 Table 4.7 The female proportion of Spodoptera exigua when rared on two different temperatures 44 Table 4.8 The oviposition period (days), the fecundity (egg/female) of the adult female moth 44 Table 4.9 The food consumption rate of larvae of beet armyworm 46 Table 4.10 The effected of pesticide on oviposition behaviour of Spodoptera exigua 47 v LIST OF FIGURES Figure 3.1 Tool for experiment 21 Figure 3.2 The pot planted green onion in net house 22 Figure 3.3 The plastic box (12x17x5 cm) rearing population larvae 23 Figure 3.4 The cage (25x25x25 cm) mass rearing 24 Figure 3.5 Plastic box(2x3x3cm) rearing larvae 24 Figure 3.6 Plastic cage (10x5x8cm) pair adult moth 26 Figure 4.1 Egg mass of beet armyworm Spodoptera exigua 29 Figure 4.2 Damage symptom on green onion plants caused by S exigua larvae 33 Figure 4.3 Larvae of beet armyworm S exigua 34 Figure 4.4 Dimorphism in sexual morphology of beet armyworm S exigua 38 Figure 4.5 Male and female moth beet armyworm Spodoptera exigua; 39 Figure 4.6 Fecundity of beet armyworm when reared different temperature 45 vi ABSTRACT In Viet Nam, Spodoptera exigua were causing significant damage in onion production areas in almost the country Accurate identification of Spodoptera exigua morphological, and biological characteristics were the foundation for developing methods to control this pest in production while remaining safe for the environment and humans This thesis researched morphological and biological characteristics, temperature effected on ecology characteristics and the food consumption rate of larvae of S exigua The size of width head, length of the body in the larvae stage, the width and length of pupae, the length and wingspan, development time duration of stage and life cycle were significant differences with temperatures 25oC and 30oC The mean life span of beet armyworm on 25oC from 27.85 to 30.85 23 days, 30oC had life span from 20.95 to 24.7 days The fecundity of adult beet armyworm reared at 25 oC (381.6 eggs/female ) was higher than 30oC (228.47 eggs/ female) Food consumption increases gradually overage and the most intake of feed consumed was the third instar larvae (358.69 mg) The hatching rate reached 67% when using Emmaben 2.0EC and 69% when using neem oil The death rate of the first instar larvae is highest at 21% when using pesticides vii I INTRODUCTION 1.1 BACKGROUND Green onion (Allium fistulosum), also known as green bunching onion, is a perennial crop that is extensively produced across the world, especially in Asian nations, where it is grown as an annual crop In Vietnam, green onion is an important seasoning vegetable, flavoring herb, or a medical plant, which has high value (Nguyen Van Dan & Doan Thi Nhu, 1989) Green onion cultivation is expanding in northern regions of Vietnam including Hanoi, Hung Yen, Thai Binh, and Hoa Binh However, producing onions safely and across a big area still presents numerous challenges, especially pest management Spodoptera exigua is known as a cosmopolitan pest of many crops though it is original to southern Asia It is the most dangerous common in green onion pest to study relative the occurrence of this pest and the factors regulating its population dynamics remain unanswered It attacks approximately 90 plant species from 18 distinct plant families, including cotton, tomato, carrot, cabbage, radish, alfalfa, sugar beet, potato, sweet potato, groundnut, wheat, maize, asparagus, cauliflower, tobacco, garlic, sesame, citrus (Xia-Lin et al., 2011) In Vietnam, S exigua has been recorded on 25 different crops, including four members of the Alliaceae family and it got caused considerable damage to green onions in Tien Giang, according to up to 78 % of farmers surveyed (Pham Van Lam et al., 2010) S exigua is causing significant damage in onion production areas in almost the country, it appears in high density, severe harm to green onions, reducing production by up to 30% and income of the farmer (Nguyen Thi Huong, 2018) Chemical control of beet armyworms was efficient most initially, despite they gradually evolved resistance, this technique harms the environment and increases the risk of its chemical resistance (Powell Cobb & Bass, 1975) In Vietnam, there are not many studies on S exigua There are a little research documenting the occurrence of beet armyworm on several crops such as soybean, cotton, green beans, and onions (Pham Van Lam et al 2010) However, the studies on this insect on green onion are very numeric, especially general research on biological and ecological characteristics Therefore, further work is needed in each of these areas to define the levels and components of the several factors that create or detract from outbreaks Accurate identification of Spodoptera exigua morphological, ecological, and biological features is the foundation for determining suitable preventative actions We investigated: “Study on biological and ecological characteristics of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) on green onion” 1.2 THE OBJECTS AND REQUIREMENT 1.2.1 The objects Understand the biological and morphology characteristics of Spodoptera exigua in order to develop a foundation for developing methods to control this pest in production while remaining safe for the environment and humans 1.2.2 Requirement Mass rearing S exigua in the laboratory condition Investigate the biological and eclology characteristics of Spodoptera exigua including life cycle, reproduction capacity, characteristics of each stage 60 Shankar & Babu,Marlabeedu, T.Ramesh & Gajula, Sridevi & Sharma, H.C (2014) Incidence and Biology of beet Armyworm, Spodoptera exigua in chickpea in Andhra Pradesh 42 61 Shapiro M., Salamouny S E., Jackson D M & Shepard B M (2012) Field evaluation of a kudzu/cottonseed oil formulation on the persistence of the beet armyworm nucleopolyhedrovirus Journal of entomological science 47(3): 197-207 62 Shorey H H & Gerber R G (1996) Disruption of pheromone communication through the use of puffers for control of beet armyworm (Lepidoptera: Noctuidae) in tomatoes Environmental entomology 25(6): 1401-1405 63 Shorey H H., Summers C G., Sisk C B & Gerber R G (1994) Disruption of pheromone communication in Spodoptera exigua (Lepidoptera: Noctuidae) in tomatoes, alfalfa, and cotton Environmental entomology 23(6): 1529-1533 64 Showler A T (2001) Spodoptera exigua oviposition and larval feeding preferences for pigweed, Amaranthus hybridus, over squaring cotton, Gossypium hirsutum, and a comparison of free amino acids in each host plant Journal of Chemical Ecology 27(10): 2013-2028 65 Singh Y & Bichoo S (1977) Bionomics of Spodoptera exigua (HB.) on gram Indian journal of entomology 66 Takai M (1991) Insecticide resistance of the beet armyworm, Spodoptera exigua (Hübner) Plant Protection (Japan) 67 Taylor J E & Riley D G (2008) Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato Crop Protection 27(2): 268-274 56 68 Vora V., Bharodia R & Kapadia M (1985) Pests of oilseed crops and their control rape and mustard Pesticides 19(1): 38-40 69 Waldbauer G (1968) The consumption and utilization of food by insects In: Advances in insect physiology Elsevier: 229-288 pages 70 Waterhouse D F 1993 The major arthropod pests and weeds of agriculture in Southeast Asia: distribution, importance and origin 71 Williams M R (2005) Cotton insect loss estimates—2000 Proc Beltwide Cotton Conf., New Orleans, LA 4-7 72 Wilson J (1932) Notes on the biology of Laphygma exigua Hübner The Florida Entomologist 16(3): 33-39 73 Xia-lin Z., Cong X.-P., Wang X.-P & Lei C.-L (2011) A review of geographic distribution, overwintering and migration in Spodoptera exigua Hübner (Lepidoptera: Noctuidae) Journal of the Entomological Research Society 13(3): 39-48 74 Yash P., Labh S & Sohi A (2005) Biology of Spodoptera exigua (Hubner)(Lepidoptera: Noctuidae) on cotton Journal of Cotton Research and Development 19(1): 88-92 75 Yee WL, Toscano NC (1998) Laboratory evaluations of synthetic and natural in secticides on beef armyworm (Lepidoptera: Noctuidae) damage and survival on lettuce Journal of Economic Entomology 91 56-63 76 Yeh S.-C., Lee S.-T., Wu C.-Y & Wang C.-H (2007) A cell line (NTUMV) established from Maruca vitrata (Lepidoptera: Pyralidae): characterization, viral susceptibility, and polyhedra production Journal of invertebrate pathology 96(2): 138-146 77 Zalom F G., Wilson L & Hoffmann M P (1986) Impact of feeding by tomato fruitworm, Heliothis zea (Boddie)(Lepidoptera: Noctuidae), and beet armyworm, Spodoptera exigua (Hübner)(Lepidoptera: Noctuidae), 57 on processing tomato fruit quality Journal of Economic Entomology 79(3): 822-826 78 Zhang B., Huai L., Helen H.-S & Wang J.-J (2011) Effect of host plants on development, fecundity and enzyme activity of Spodoptera exigua (Hübner)(Lepidoptera: Noctuidae) Agricultural Sciences in China 10(8): 1232-1240 79 Zheng X.-L., Cong X.-P., Wang X.-P & Lei C.-L (2011) Pupation behaviour, depth, and site of Spodoptera exigua Bull Insectol 64(2): 209-214 58 APPENDIX the wight of head capsule Temperature 25 N Mean 30 L2 30 L3 30 L4 L5 L6 30 30 30 30 2867 5567 9400 1.5367 1.8533 2.1367 Std Error of Mean Minimum 00631 00920 01406 01015 01496 01396 20 50 90 1.40 1.70 1.90 Maximum 30 60 1.10 1.60 2.00 2.30 N 30 30 30 30 30 30 Mean Total L1 2733 5700 9300 1.5233 1.8100 2.1033 Std Error of Mean Minimum 00821 00851 02098 02181 02163 02467 20 50 80 1.30 1.50 1.90 Maximum 30 60 1.20 1.70 2.00 2.30 N 60 60 60 60 60 60 2800 5633 9350 1.5300 1.8317 2.1200 Std Error of Mean 00521 00627 01254 01196 01334 01422 Minimum 20 50 80 1.30 1.50 1.90 Maximum 30 60 1.20 1.70 2.00 2.30 Mean Test Statisticsa MannWhitney U Wilcoxon W Z Asymp Sig (2tailed) L1 390.000 L2 390.000 L3 397.500 L4 438.500 L5 382.000 L6 402.000 855.000 855.000 862.500 903.500 847.000 867.000 -1.280 -1.063 -.913 -.182 -1.062 -.753 200 288 361 856 288 451 a Grouping Variable: nhiet wight of larvae Temperature 25 N L2 L3 L4 L5 L6 30 30 30 30 30 30 2400 5433 9833 1.6467 2.1033 2.7133 Std Error of Mean 00910 01143 02149 01571 02061 02075 Minimum 20 50 80 1.50 2.00 2.60 Maximum 30 70 1.20 1.80 2.40 3.00 Mean 30 L1 N Mean 30 30 30 30 30 30 2567 5267 9600 1.6700 2.1667 2.7433 59 Total Std Error of Mean Minimum 00920 01262 02011 01450 02053 02477 20 40 80 1.50 2.00 2.60 Maximum 30 70 1.20 1.80 2.30 3.10 N 60 60 60 60 60 60 2483 5350 9717 1.6583 2.1350 2.7283 Std Error of Mean 00651 00851 01467 01071 01500 01614 Minimum 20 40 80 1.50 2.00 2.60 Maximum 30 70 1.20 1.80 2.40 3.10 Mean Test Statisticsa MannWhitney U Wilcoxon W Z Asymp Sig (2tailed) L1 375.000 L2 402.000 L3 402.000 L4 381.500 L5 305.500 L6 402.000 840.000 867.000 867.000 846.500 770.500 867.000 -1.281 -.816 -.752 -1.086 -2.211 -.747 200 415 452 277 027 455 a Grouping Variable: Temperature length of larvae Temperature 25 N 30 Total L1 L2 L3 L4 L5 L6 30 30 30 30 30 30 Mean 2.0367 4.7367 9.3933 13.5367 15.9600 20.0300 Std Error of Mean 07152 12001 13069 24257 20720 15441 Minimum 1.30 3.50 8.00 10.80 13.30 18.50 Maximum 2.80 6.10 10.50 15.50 17.60 21.90 30 30 30 30 30 30 Mean 2.0500 4.8367 9.6400 13.6200 16.1000 20.5433 Std Error of Mean 05887 12861 23827 21895 15298 10888 Minimum 1.30 3.10 7.50 10.90 13.90 19.40 Maximum 2.60 6.10 12.00 15.60 17.50 21.90 60 60 60 60 60 60 Mean 2.0433 4.7867 9.5167 13.5783 15.9583 20.2867 Std Error of Mean 04593 08745 13568 16209 13074 09945 Minimum 1.30 3.10 7.50 10.80 13.30 18.50 Maximum 2.80 6.10 12.00 15.60 17.60 21.90 N N 60 Independent Samples Test Levene's Test for Equality of Variances L1 Equal variances assumed F 1.639 Sig .206 Equal variances not assumed L2 Equal variances assumed 058 810 Equal variances not assumed L3 Equal variances assumed 7.418 009 Equal variances not assumed L4 Equal variances assumed 124 726 Equal variances not assumed L5 Equal variances assumed 1.805 184 Equal variances not assumed L6 Equal variances assumed Equal variances not assumed 4.597 036 t-test for Equality of Means 95% Confidence Interval of the Difference 58 Sig (2tailed) 886 Mean Difference -.01333 Std Error Difference 09263 Lower -.19875 Upper 17208 -.144 55.934 886 -.01333 09263 -.19890 17223 -.568 58 572 -.10000 17590 -.45211 25211 -.568 57.724 572 -.10000 17590 -.45214 25214 -.908 58 368 -.24667 27176 -.79065 29731 -.908 45.000 369 -.24667 27176 -.79401 30068 -.255 58 800 -.08333 32677 -.73744 57077 -.255 57.402 800 -.08333 32677 -.73758 57091 -.544 58 589 -.14000 25756 -.65556 37556 -.544 53.373 589 -.14000 25756 -.65651 37651 -2.717 58 009 -.51333 18894 -.89153 -.13513 -2.717 52.122 009 -.51333 18894 -.89244 -.13422 t -.144 df 61 the width and length of pupae temperature 25 width female 20 lenght female 20 width male 20 length male 20 3383 1.3167 3133 1.2633 Std Error of Mean Minimum 00819 01276 00631 00895 30 1.20 30 1.30 Maximum 40 1.40 40 1.40 N 20 20 20 20 3267 1.3033 3150 1.2833 Std Error of Mean Minimum 00821 01552 00641 01523 30 1.10 30 1.10 Maximum 40 1.40 40 1.40 N 40 40 40 40 3325 1.3100 3142 1.3233 Std Error of Mean 00580 01000 00446 01019 Minimum 30 1.10 30 1.10 Maximum 40 1.40 40 1.40 width female 380.000 lenght female 417.500 width male 437.000 length male 205.500 845.000 882.500 902.000 670.500 -1.217 -.517 -.310 -3.933 224 605 756 000 N female 20 male 20 Mean 96.2667 95.3633 Std Error of Mean Minimum 1.75508 2.02401 78.00 80.80 Maximum 121.00 122.00 N Mean 30 Mean Total Mean Test Statisticsa Mann-Whitney U Wilcoxon W Z Asymp Sig (2tailed) a Grouping Variable: temperature wight of pupae temperature 25 30 N Mean 20 20 96.4000 95.7633 62 Total Std Error of Mean Minimum 1.84428 2.20202 76.00 78.00 Maximum 118.00 121.00 40 40 Mean 96.3333 95.5633 Std Error of Mean 1.26215 1.48296 Minimum 76.00 78.00 Maximum 121.00 122.00 N Independent Samples Test Levene's Test for Equality of Variances female Equal variances assumed F 200 t-test for Equality of Means Sig .656 Equal variances not assumed male Equal variances assumed Equal variances not assumed 465 498 t -.052 df Sig (2Mean Std Error tailed) Difference Difference 58 958 -.13333 2.54592 95% Confidence Interval of the Difference Lower -5.22954 Upper 4.96287 -.052 57.858 958 -.13333 2.54592 -5.22980 4.96314 -.134 58 894 -.40000 2.99091 -6.38696 5.58696 -.134 57.593 894 -.40000 2.99091 -6.38786 5.58786 the length and width of adult moth length female 20 width female 20 length male 20 width male 20 Mean 1.3333 2.6900 1.3067 2.6667 Std Error of Mean Minimum 01684 02727 00951 02641 1.20 2.40 1.20 2.50 1.50 3.10 1.40 3.00 temperature 25 N Maximum 30 N 20 20 20 20 Mean 1.3367 2.7867 1.3200 2.7967 Std Error of Mean Minimum 01221 02432 01114 02690 1.20 2.60 1.20 2.60 1.50 3.10 1.40 3.20 Maximum 63 Total N 40 40 40 40 Mean 1.3350 2.7383 1.3133 2.7317 Std Error of Mean 01031 01918 00731 02051 Minimum 1.20 2.40 1.20 2.50 Maximum 1.50 3.10 1.40 3.20 Test Statisticsa MannWhitney U Wilcoxon W Z length female 448.500 width female 283.500 length male 396.000 width male 238.500 913.500 748.500 861.000 703.500 -.024 -2.538 -.961 -3.190 981 011 337 001 Asymp Sig (2tailed) a Grouping Variable: temperature development time of beet armyworm Temperature 25 N 30 Total Incubation 25 L1 35 Mean 2.6400 Std Error of Mean 35 L3 35 L4 35 L5 35 L6 35 pupae 35 developmentime 35 2.2286 2.6857 3.0857 2.7714 3.4857 3.8571 6.6286 24.7429 09798 07201 07961 06313 07201 08571 09297 09245 20227 Minimum 2.00 2.00 2.00 2.00 2.00 3.00 3.00 6.00 23.00 Maximum 3.00 3.00 3.00 4.00 3.00 4.00 5.00 8.00 27.00 N L2 25 35 35 35 35 35 35 35 35 Mean 2.0800 1.9429 2.3429 2.7429 1.8571 3.0286 3.2857 4.5429 19.7429 Std Error of Mean 05538 05714 08140 07495 06001 06463 07748 08543 19807 Minimum 2.00 1.00 2.00 2.00 1.00 2.00 3.00 4.00 17.00 Maximum 3.00 3.00 3.00 3.00 2.00 4.00 4.00 5.00 22.00 50 70 70 70 70 70 70 70 70 Mean 2.3600 2.0857 2.5143 2.9143 2.3143 3.2571 3.5714 5.5857 22.2429 Std Error of Mean 06857 04876 06017 05284 07207 05997 06922 14023 33215 Minimum 2.00 1.00 2.00 2.00 1.00 2.00 3.00 4.00 17.00 Maximum 3.00 3.00 3.00 4.00 3.00 4.00 5.00 8.00 27.00 N 64 Test Statisticsa MannWhitney U Wilcoxon W Z Incubation 137.500 L1 449.500 L2 402.500 L3 420.500 L4 120.000 L5 349.500 L6 300.000 pupae 0.000 developmentime 0.000 462.500 1079.500 1032.500 1050.500 750.000 979.500 930.000 630.000 630.000 -4.083 -2.923 -2.849 -3.238 -6.540 -3.819 -4.154 -7.433 -7.265 000 003 004 001 000 000 000 000 000 Asymp Sig (2tailed) Longevity of adult moth temperature 25 N 30 Total female male 20 20 Mean 5.9000 5.6500 Std Error of Mean N 17622 10942 20 20 Mean 5.2000 4.7000 Std Error of Mean N 15560 12773 40 40 Mean 5.5500 5.1750 Std Error of Mean 12885 11259 Test Statisticsa MannWhitney U Wilcoxon W Z Asymp Sig (2tailed) female 110.500 male 55.500 320.500 265.500 -2.634 -4.252 008 000 Exact 014b Sig [2*(1tailed Sig.)] a Grouping Variable: temperature 000b b Not corrected for ties 65 LIFE SPAN OF ADULT MOTH temperature 25 N female Mean 30 Std Error of Mean N Mean Total Std Error of Mean N Mean Std Error of Mean male 20 20 30.8500 27.8500 27410 1.23815 20 20 24.7000 20.9500 12773 1.58857 40 40 27.7750 24.4000 51452 1.13725 Test Statisticsa MannWhitney U Wilcoxon W Z female 0.000 male 18.500 210.000 228.500 -5.599 -4.954 000 000 Asymp Sig (2tailed) Exact 000b Sig [2*(1tailed Sig.)] a Grouping Variable: temperature 000b b Not corrected for ties oviposition period temperature 25 N 30 Total preoviposition 20 oviposition 20 Mean 2.2000 4.5000 Std Error of Mean N 09177 11471 20 20 Mean 1.2500 3.0500 Std Error of Mean N 09934 05000 40 40 Mean 1.7250 3.7750 66 Std Error of Mean 10119 13150 Test Statisticsa MannWhitney U Wilcoxon W Z preoviposition 40.000 oviposition 5.000 250.000 215.000 -4.833 -5.698 000 000 Asymp Sig (2tailed) Exact 000b Sig [2*(1tailed Sig.)] a Grouping Variable: temperature 000b b Not corrected for ties fecundity temperature 25 N 30 Total daily total 92 15 Mean 85.2935 381.6000 Std Error of Mean N 3.73161 14.11882 49 15 Mean 72.8571 228.4667 Std Error of Mean 4.33866 8.26862 141 30 Mean 80.9716 305.0333 Std Error of Mean 2.89812 16.33320 N 67 Independent Samples Test Levene's Test for Equality of Variances F daily Equal variances assumed Sig .747 389 Equal variances not assumed total Equal variances assumed 4.921 035 Equal variances not assumed t-test for Equality of Means t df Sig (2tailed) Mean Difference Std Error Difference 95% Confidence Interval of the Difference 2.067 139 041 12.43634 6.01624 Lower 54117 Upper 24.33150 2.173 112.740 032 12.43634 5.72266 1.09843 23.77424 9.359 28 000 153.13333 16.36188 119.61754 186.64912 9.359 22.593 000 153.13333 16.36188 119.25241 187.01426 emerger rate emerger rate temperature 25 30 Total Test Statisticsa N 30 30 60 Mean 95.8381 82.6790 89.2585 Std Error of Mean 66060 5.88322 3.05735 emerger rate Mann-Whitney U 270.000 Wilcoxon W 735.000 Z -2.662 Asymp Sig (2-tailed) 008 a Grouping Variable: temperature The food consumption L2 L3 60 60 90 26.2621 143.2715 358.6888 2.35297 7.26666 12.11603 L1 N Mean Std Error of Mean L4 L5 60 287.3115 12.35670 90 117.0816 2.31317 L6 90 53.0481 3.41952 68 Test Statisticsa,b Chi-Square DAILY 1,428 EMERGER 89,923 MORTALITY1 86,801 2 ,490 ,000 ,000 df Asymp Sig a Kruskal Wallis Test b Grouping Variable: TREATMENT Test Statisticsa 1-2 MannWhitney U Wilcoxon W Z Asymp Sig (2-tailed) EMERGER 0,000 MORTALITY1 30,000 1035,000 1065,000 -8,210 -7,950 ,000 ,000 a Grouping Variable: TREATMENT Test Statisticsa 1-3 MannWhitney U Wilcoxon W Z Asymp Sig (2-tailed) EMERGER 0,000 MORTALITY1 2,500 1035,000 1037,500 -8,210 -8,173 ,000 ,000 a Grouping Variable: TREATMENT Test Statisticsa 2-3 MannWhitney U Wilcoxon W Z Asymp Sig (2-tailed) EMERGER 913,500 MORTALITY1 932,000 1948,500 1967,000 -,800 -,650 ,424 ,316 a Grouping Variable: TREATMENT 69 oviposition behaviour Descriptives DAILY CONTROL N 45 PESTICIDE 45 120,8444 44,95905 2,63021 107,3373 134,3516 41,00 215,00 NEEM OIL 45 132,4222 48,00307 2,73156 118,0005 146,8439 63,00 253,00 135 129,5185 49,13929 4,22924 121,1538 137,8832 41,00 253,00 CONTROL 45 ,9651 ,01632 ,01243 ,9602 ,9700 ,92 ,98 PESTICIDE 45 ,6720 ,11389 ,01698 ,6378 ,7062 ,39 ,83 NEEM OIL 45 ,6940 ,10502 ,01566 ,6624 ,7256 ,43 ,86 135 ,7770 ,16083 ,01384 ,7497 ,8044 ,39 ,98 45 ,0287 ,01841 ,00275 ,0231 ,0342 0,00 ,08 PESTICIDE 45 ,2160 ,14461 ,02156 ,1726 ,2594 ,04 ,60 NEEM OIL 45 ,1938 ,12153 ,01812 ,1573 ,2303 ,07 ,56 135 ,1461 ,13734 ,01182 ,1228 ,1695 0,00 ,60 Total EMERGER Std Mean Deviation Std Error 135,2889 53,93077 2,13952 95% Confidence Interval for Mean Minimum Maximum Lower Upper Bound Bound 119,0863 151,4915 48,00 250,00 Total MORTALITY1 CONTROL Total 70

Ngày đăng: 11/07/2023, 14:18

Tài liệu cùng người dùng

  • Đang cập nhật ...