Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 110 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
110
Dung lượng
587,75 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: CÁC NGUYÊN LÝ CƠ BẢN CỦA LÝ THUYẾT ÁNH XẠ BẢO GIÁC LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Ngày nay, nhu cầu phát triển không ngừng khoa học kỹ thuật, ngày xuất nhiều toán với hàm mục tiêu f(x) khơng trơn (khơng có đạo hàm) Ví dụ phương pháp chỉnh hóa thưa, chỉnh hóa biến phân cho toán ngược, dẫn đến tốn tối ưu khơng trơn Phương pháp chỉnh hóa thưa nghiên cứu 10 năm trở lại Phương pháp ứng dụng nhiều lĩnh vực khác xử lí ảnh, xác định tham số phương trình đạo hàm riêng, 22 2 2.1 Một số đặc biệt hóa Jacobson vành Biểu diễn ∆(R) tính chất Trong mục này, khảo sát tập ∆(R) =: {r ∈ R|r+U (R) ⊆ U (R)} vành R Tập vành có quan hệ chặt chẽ với Jacobson R Ta ∆(R) vành Jacobson lớn R đóng với phép tốn nhân phần tử khả nghịch R Các tính chất ∆ cấu trúc vành nghiên cứu, trình bày số họ vành mà ∆(R) = J(R) Các phương pháp cấu trúc vành với ∆(R) ̸= J(R) mô tả Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 20, ∆(T ) iđêan T Theo (4) Bổ đề 20, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề 20 (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề 20 (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề 20 ∆(R) [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 2.2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bổ đề Cho R vành khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ Cho R vành có unit regular, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R)+J(R[x]) Nhóm quaternion suy rộng Mệnh đề Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n Pr(H, Q4n ) = n+k k | n, 2n 2n + k k ∤ n 4n (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề ?? ta có 2n 2n = (2n, k) k |Rk | = Do Rk = ⟨rk ⟩ = 2n −1 rik 38 Mệnh đề 12 (Định lý Lagrange) Cho G nhóm hữu hạn, H nhóm G Khi |H| ước |G| Với G nhóm hữu hạn, H ⩽ G, ta ký hiệu |G : H| = |G| : |H|, gọi số nhóm H G Mệnh đề 13 Cho G nhóm, A, B hai nhóm hữu hạn G Ký hiệu AB = {ab | a ∈ A, b ∈ B} Khi |AB| = |A||B| |A ∩ B| Cho G nhóm, a phần tử G Với u phần tử G, liên hợp u a, ký hiệu ua , định nghĩa ua = a−1 ua Với H nhóm G, ta gọi H nhóm chuẩn tắc G, ký hiệu H ◁ G, ∈ H với a ∈ G, h ∈ H Cho N nhóm chuẩn tắc G Ký hiệu G/N = {aN | a ∈ G} Khi G/N nhóm với phép tốn xác định sau Với a, b ∈ G (aN )(bN ) = abN Nhóm G/N gọi nhóm thương G N Với S tập G, tâm hóa S G, ký hiệu CG (S), định nghĩa CG (S) = {a ∈ G | ua = u với u ∈ S} Trong trường hợp S = {x}, ta dùng ký hiệu CG (x) thay cho CG (S) Tâm nhóm G, ký hiệu Z(G), định nghĩa Z(G) = CG (G) Mệnh đề 14 Cho G nhóm khơng giao hốn Khi đó, nhóm thương G/Z(G) khơng nhóm xiclíc Cho G nhóm Với x y hai phần tử G, giao hoán tử x y , ký hiệu [x, y], định nghĩa [x, y] = x−1 y −1 xy 39 Nhóm giao hốn tử G, ký hiệu G′ , định nghĩa nhóm sinh tập tất giao hoán tử {[x, y] | x, y ∈ G} Cho hai nhóm G H Một ánh xạ f : G → H gọi đồng cấu nhóm với a, b ∈ G f (ab) = f (a)f (b) Nếu đồng cấu f đơn ánh (tương ứng, tốn ánh, song ánh) ta gọi f đơn cấu (tương ứng, toàn cấu, đẳng cấu) Ta ký hiệu Aut(G) nhóm tất tự đẳng cấu G Cho N H hai nhóm bất kỳ, cho θ : H → Aut(N ) đồng cấu nhóm Khi đó, tập hợp G = {(x, h) | x ∈ N, h ∈ H} nhóm với phép tốn xác định sau Với (x1 , h1 ), (x2 , h2 ) ∈ G, (x1 , h1 )(x2 , h2 ) = (x1 θ(h1 )(x2 ), h1 h2 ) Nhóm G xác định gọi tích nửa trực tiếp N H ứng với tác động θ, ký hiệu G = N ×θ H Trong trường hợp đặc biệt θ đồng cấu tầm thường tích nửa trực tiếp tích trực tiếp Sau số kiến thức p-nhóm nhóm abel hữu hạn Cho p số nguyên tố Một nhóm G gọi p-nhóm |G| mơt lũy thừa p Ta thấy nhóm con, nhóm thương p-nhóm p-nhóm Mệnh đề 15 Cho p số nguyên tố Khi (i) Mọi nhóm có cấp p nhóm xiclíc (ii) Mọi nhóm có cấp p2 nhóm abel Mệnh đề 16 Mọi nhóm abel hữu hạn G biểu diễn cách thành tích trực tiếp nhóm xiclíc G∼ = Cn1 × Cn2 × · · · × Cnk ni ⩾ 2, i = 1, 2, k , n1 | n2 | · · · | nk 40 Sau số kiến thức nhóm đối xứng nhóm thay phiên Cho X tập hợp Một song ánh từ tập X đến gọi phép tập X Ký hiệu S(X) tập tất phép tập X Khi S(X) nhóm với phép tốn hợp thành ánh xạ Ta gọi S(X) nhóm đối xứng tập X Ta dùng ký hiệu Sn để nhóm đối xứng tập X = {1, 2, , n} gọi Sn nhóm đối xứng bậc n Định lý 16 Mọi phép π ∈ Sn với n ⩾ phân tích thành tích xích rời Phân tích không kể đến thứ tự nhân tử Cho π ∈ Sn với n ⩾ Khi đó, theo Định lý ??, ta có phân tích π thành tích xích rời π = (a11 a12 · · · a1k1 )(a21 a22 · · · a2k2 ) · · · (as1 as2 · · · asks ) ta giả thiết k1 ⩾ k2 ⩾ · · · ⩾ ks Ta gọi (k1 , k2 , , ks ) kiểu phép π Mệnh đề 17 Hai phép nhóm đối xứng Sn với n ⩾ liên hợp với chúng có kiểu Cho σ ∈ Sn với n ⩾ Ta nói cặp (σ(i), σ(j)) nghịch σ i < j σ(i) > σ(j) Dấu phép σ, ký hiệu sign(σ), xác định công thức sign(σ) = (−1)t t số nghịch σ Nếu sign(σ) = ta gọi σ phép chẵn, sign(σ) = −1 ta gọi σ phép lẻ Mệnh đề 18 Cho σ, τ ∈ Sn với n ⩾ Khi (i) sign(στ ) = sign(σ)sign(τ ) (ii) Nếu σ xích độ dài k sign(σ) = (−1)k+1 Với n ⩾ ta ký hiệu An tập phép chẵn bậc n Khi An nhóm chuẩn tắc số Sn Ta gọi An nhóm thay phiên bậc n Cuối mục kết độ giao hốn nhóm 41 Định nghĩa Cho G nhóm Ký hiệu C = {(x, y) ∈ G × G | xy = yx} Độ giao hoán G, ký hiệu Pr(G), định nghĩa sau Pr(G) = |C| |G|2 Mệnh đề 19 Nếu G nhóm khơng giao hốn Pr(G) ⩽ 13 Khơng gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm |f (x) − f (y)| Lip(f ) = Lip(f, A) := sup : x, y ∈ A, x ̸= y |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề 20 Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) 42 Nhận xét Từ mệnh đề 29 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề 21 Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) khơng Ω khơng lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0, x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L x 1/β √ , Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) 43 Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý 17 (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý 18 (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) khơng gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (15) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (16) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (??) (??), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, theo (??), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) (17) 44 Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (??), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (??), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải khơng gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề ?? ta kết sau Hệ 13 Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 ∀f ∈ C1 (Ω), L nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) không gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề ?? nhận xét ?? (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý 19 Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý ??) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa 45 (ii) F đóng (C0 (Ω), ∥.∥∞ ): nghĩa là, (fh )h ⊂ F với ∥fh − f ∥∞ , f ∈ F Thật fh ∈ FLef trightarrow|fh (x)|+ |fh (y) − fh (z)| ≤1 y−z ∀h, x, y, z ∈ Ω với y ̸= z Lấy qua giới hạn, h → ∞, ta |f (x)| + |f (y) − f (z)| ≤1 y−z ∀x, y, z ∈ Ω với y ̸= z từ f ∈ F (iii) F liên tục Ω Thật vậy, đủ để nhận thấy rằng, theo định nghĩa |f (y) − f (z)| ≤ |y − z| ∀y, z ∈ Ω, f ∈ F Ta có điều phải chứng minh Nhận xét Chú ý BC1 (Ω) := {f ∈ C1 (Ω) : ∥f ∥C1 ≤ 1} không compact (C1 (Ω), ∥.∥∞ ) Đây đặc trưng tốt có Lip(Ω) khơng có C1 (Ω) Tính tách (Lip(Ω), ∥.∥Lip ) Định lý 20 Cho Ω ⊂ Rn tập mở bị chặn Khi (Lip(Ω), ∥.∥Lip ) khơng tách Chứng minh Ta cần tồn họ tách rời không đếm {Uα : α ∈ I} tập mở (Lip(Ω), ∥.∥Lip ) (Mệnh đề ??) Ta chia chứng minh thành hai bước Bước 1: Giả sử n = Ω = (a, b) ta chứng minh kết luận Cho {uα : α ∈ (a, b)} ⊂ (Lip(a, b)) họ hàm uα (x) := |x − α| x ∈ (a, b), α ∈ I := (a, b) Ta chứng minh ∥uα − uβ ∥Lip ≥ Lip(uα − uβ ) ≥ α ̸= β (18) 46 Thật |uα (x) − uβ (x) − uα (y) + uβ (y)| Lip(uα − uβ ) = sup : x, y ∈ (a, b), x ̸= y |x − y| |uα (α) − uβ (α) − uα (β) + uβ (β)| |α − β| =2 = |α − β| |α − β| ≥ Vì họ Uα := {f ∈ Lip((a, b)) : ∥f − uα ∥Lip < ∀α ∈ I} Ta điều mong muốn Bước 2: Giả sử Ω tập mở bị chặn Từ Ω mở, tồn hình cầu mở (a1 , b1 ) × · · · × (an , bn ) ⊂ Ω Cho {fα : α ∈ (a1 , b1 )} ⊂ Lip(Ω) họ hàm định nghĩa fα (x) := uα (x1 ) x = (x1 , x2 , , xn ) ∈ Ω, α ∈ I := (a1 , b1 ), uα hàm biến theo định nghĩa bước Theo (??) ta được, α ̸= β Lip(fα − fβ , Ω) ≥ Lip(uα − uβ , (a1 , b1 )) ≥ Vì vậy, họ Uα := {f ∈ Lip(Ω) : ∥f − fα ∥Lip < 1} ∀α ∈ I Ta điều cần chứng minh Ta xem xét lớp Lip(Ω) hàm liên tục Lipschitz f : Ω → R mà định nghĩa thỏa mãn ước lượng |f (x) − f (y)| < C|x − y| ∀x, y ∈ Ω (L) Với C > Giống hàm thỏa mãn (L), hàm thỏa mãn tính chất (H) quan trọng, hàm thỏa mãn tính chất (H) gọi hàm thỏa mãn điều kiện Holder với số mũ α |f (x) − f (y)| ≤ C|x − y|α với số C, α > ∀x, y ∈ Ω (H) 47 Bài tập Cho Ω ⊂ Rn tập mở liên thông giả sử (H) với C > α > Khi f ≡ const Do điều kiện Holder khơng cịn ý nghĩa cho hàm với số mũ lớn tập mở liên thông Định nghĩa Cho A ⊂ Rn , hàm f : A → R gọi liên tục Holder với mũ α > thỏa mãn (H) với sơ C > 14 Độ giao hoán tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hốn tương đối mở rộng nhóm Mệnh đề 22 Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề ??, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |C (x)| |C (x)| |CH1 (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề ?? ta có Pr(H1 , H2 ) = X 1 X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề ?? ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | Vậy ta có điều phải chứng minh X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 48 Mệnh đề 23 Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN Do yN ∈ CH/N (xN ) Từ suy CH (x)N ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? CH (x)N N 49 Chứng minh Từ Mệnh đề ?? ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S X X CH (y)N