1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giá trị đầu của nghiệm bị chặn của phương trình vi phân tuyến tính với hàm ràng buộc tuần hoàn

88 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 88
Dung lượng 536,83 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: GIÁ TRỊ ĐẦU CỦA NGHIỆM BỊ CHẶN CỦA PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH VỚI HÀM RÀNG BUỘC TUẦN HỒN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Đề tài nghiên cứu luận văn thạc sĩ khoa học “Mối quan hệ số tính chất mạng khơng gian topo” đạt số kết sau đây: - Trình bày lại cách có hệ thống chứng minh chi tiết số kết topo đại cương - Trình bày khái niệm, tính chất số không gian metric suy rộng chứng minh chi tiết số mối quan hệ chúng - Trình bày khái niệm tính chất số mạng không gian topo chứng minh chi tiết số mối quan hệ chúng 75 Biểu diễn ∆(R) tính chất Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y Y lại hiển nhiên Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈IY Ri ) = i∈I U (Ri )) ⊆ i∈I U (Ri ) nên i∈I Y Y ri + i∈I Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ U (Ri ) hay U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I i∈IY Y i∈I ri ∈ (ri + Yi∈I ∆(Ri ) i∈I Chiều ngược lại tương tự Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề ?? (2) ta suy hệ sau Hệ Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề ?? (2) suy ∆(T ) iđêan T Theo Bổ đề ?? (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề ?? (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả nghịch S nên + su ∈ U (R) Theo Bổ đề ?? (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý ?? (2) ta có hệ sau Hệ Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý ?? (1) ta thu hệ sau Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành khơng thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ?? ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề ?? (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = U (R) nên chiều ngược lại ¯ = ∆(R) Vì U (R) I ⊆ J(R) Suy ∆(R) dễ thấy Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề ?? (3) Hệ ?? ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề ?? (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i phép nhân, lấy f, g ∈ R[[x]], f = x , g = bi xi Ta định i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép tốn R[[x]] vành giao hốn có đơn vị Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề ?? (3) ta suy trực tiếp hệ sau Hệ Cho R vành tùy ý Khi đó, khẳng định sau (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ ?? ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý 36, phần tử R tổng ba phần tử khả nghịch, theo Hệ ?? ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề ?? (5) (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean  thỏa mãn ∈U (R) Nếu e ∈ R lũy đẳng 1 − (1 − 2e) tổng hai phần tử khả 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ ?? ta suy ∆(R) = J(R) (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn − 2e ∈ U (R) e = x ∈ R cho r + x(1 − sr) ∈ U (R), suy x(1 − sr) ∈ r + U (R) ⊆ U (R), (1 − sr) khả nghịch hay r ∈ J(R) (6) Giả sử R = F G nhóm đại số trường F Khi đó, phần tử R tổng phần tử khả nghịch Theo Hệ ?? ta suy ∆(R) = J(R) Ta biết vành nửa địa phương có hạng ổn định 1, điều kiện (2) (5) tương đương Bổ đề Giả sử G nhóm nhóm R phép tốn cộng Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Lấy r ∈ R G nhóm cộng, rG ⊆ G (1 − r)G ⊆ G Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R); (2) G Jacobson lớn đóng với phép nhân phần tử tựa khả nghịch R; (3) G nhóm lớn R phép cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Theo Định lý ?? (2) Bổ đề ?? ∆(R) Jacobson R đóng với phép nhân phần tử tựa khả nghịch Giả sử G nhóm cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Cụ thể, G Jacobson không chứa đơn vị R, theo Bổ đề ??, G đóng với phép nhân phần tử khả nghịch R Do theo Định lý ?? (2) ta G ⊆ ∆(R) KHÔNG GIAN CÁC HÀM KHẢ TÍCH Định lý Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp Định nghĩa Cho (X, τ ) khơng gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý 20 dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X 64 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  n n n−1 n−1 n−1 |SD | + |SD | + |U | + |U | = 2 ,j ,2 +j · 2n+1 1 = (2n+1 + 2n+1 + + 4) = + n n+1 4·2 2  =  Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ta có |Ui,j | = Do 2n+1 i  2n li li+j r ,r s 0⩽l⩽ −1 i  Ui,j = Khi đó, theo Mệnh đề ??, ta có X X |CSD2n (rli )| + |CSD2n (x)| = 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 n−1 0⩽l⩽ 2i −1 )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n i |CSD2n (rli+j s)| n n x∈Ui,j X X |CSD2n (rli+j s)| n 0⩽l⩽ 2i −1 2n−1 i  − |R1 | + 2n |U n−1 | i ,li+j 2n 2n+1 (2n−1 + i + 2) 2n − 2n + = i i i  Do đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = = X 1 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i i+2 2n+1 (2n−1 + i + 2) 2n−1 + i + = = + n+1 n+1 2(n+1) i 2 i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề ?? 65 Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi Pr(R1 , SD16 ) = 1 + = , Pr(R2 , SD16 ) = + = , 16 16 16 66 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) 1 = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + = ; 16 16 Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = 2+1 11 + = , 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 21 Nhóm giả nhị diện Mệnh đề 23 Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i −  1   + n i = 2n−1 , 2 Pr(H, SD2n ) =   + i + i ̸= 2n−1 2n+1 67 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề 10 ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸=  = |SD2n | + |SD2n | + = 2n+1 + 2n+1 +  2n n−1 k  − |R1 | k 2n+1 (2n−1 + k) 2n − 2n = k k  Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = k 2n+1 (2n−1 + k) 2n−1 + k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề 9, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề ?? ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)|  1 1 n | + |U n−1 | |SD (2n+1 + 4) = + n 2 ,l = n+1 n+1 2·2 2·2 2 Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s}  68 Khi đó, theo Mệnh đề ?? ta có X |CSD2n (x)| |Tl ||SD2n | Pr(Tl , SD2n ) = x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1  n | + |U n−1 | + |SD2n | + |U n−1 n−1 = |SD | 2 ,l ,l+2 · 2n+1  1 n+1 n+1 + + + = + = · 2n+1 2n =   Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề 9, ta có 2n+1 2n+1 = n−1 = i |Ui,j | = Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j s)| = )| + |C |C n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  = |SD2n | + |SD2n | + |U2n−1 ,j | + |U2n−1 ,2n−1 +j | n+1 4·2 1 = (2n+1 + 2n+1 + + 4) = + n n+1 4·2 2   Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ta có |Ui,j | = 2n+1 i 69 Do  Ui,j = li r ,r li+j  2n −1 s 0⩽l⩽ i Khi đó, theo Mệnh đề ??, ta có X X |CSD2n (rli )| + |CSD2n (x)| = 0⩽l⩽ 2i −1 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 n−1 |CSD2n (rli+j s)| n n x∈Ui,j X )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸=  = |SD | + |SD | + 2n = n+1 +2 2n n+1  + 2n X |CSD2n (rli+j s)| n 0⩽l⩽ 2i −1 2n−1 i 2n − |R1 | + |U2n−1 ,li+j | i i  2n 2n+1 (2n−1 + i + 2) 2n − 2n + = i i i  Do đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = = X 1 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i 2n+1 (2n−1 + i + 2) 2n−1 + i + i+2 = = + n+1 n+1 2(n+1) i 2 i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 70 Khi 1 + = , Pr(R2 , SD8 ) = + = , 8 4 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(R1 , SD8 ) = Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi + = , Pr(R2 , SD16 ) = + = , 16 16 16 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(R1 , SD16 ) = Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) 1 = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + = ; 16 16 2+1 11 Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = + = , 32 32

Ngày đăng: 03/07/2023, 11:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w