1. Trang chủ
  2. » Luận Văn - Báo Cáo

Sự tồn tại vectơ riêng dương của ánh xạ tuyến tính dương

124 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 124
Dung lượng 638,85 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: SỰ TỒN TẠI VECTƠ RIÊNG DƯƠNG CỦA ÁNH XẠ TUYẾN TÍNH DƯƠNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 MỞ ĐẦU Thiết lập số tính chất hàm khả vi hai lần theo nghĩa mở rộng số quy tắc tính tốn tổng đạo hàm đồ thị gradient, đạo hàm bậc hai đạo hàm parabol 637 Thiết lập điều kiện đủ cực tiểu địa phương mạnh cho hàm thường nửa liên tục thông qua đạo hàm đồ thị gradient Đặc trưng điều kiện tăng trưởng bậc hai thơng qua đạo hàm đồ thị gradient tính quy mêtric mạnh lớp hàm lồi biến phân lớp hàm biểu diễn dạng tổng hàm khả vi hai lần theo nghĩa mở rộng hàm liên tục vi phân, quy gần kề khả vi đồ thị hai lần 2 Không gian hữu hạn chiều Định nghĩa (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính khơng gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý Giả sử E không gian vector hữu hạn chiều dimR E = n (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho khơng gian định chuẩn vơ hạn chiều Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề ?? ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy R∼ = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề 50 Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần  tử khác không  khả nghịch Lấy bất 0 − a     0 0    kỳ a ∈ R, a = ̸ 0, ta có X =      ∈ Mn (R) X =    0 Do M n (R) ∆U -vành,ta lấy X ∈ ∆(Mn (R)) Lấy phần  tử 0 1 0 0  0        0  U =  ∈ Mn (R) Khi In −U X =           0 0 0 khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể Tiếp theo, ta chứng minh R ∼ = F2 Lấy a ∈ R, a ̸= khả nghịch  0 0   0     a a ̸= Lấy  a 0    X=     0 a 0   0  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)    0 a   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms)  r m r  Mở rộng tầm thường T (R, M ) đẳng cấu với vành : r ∈ R m ∈ M   R M Hơn nữa, kiểm tra vành ma trận × R ∼ T (R, R) = R[x]/(x ) Theo Mệnh đề ??, có tập phần tử khả nghịch mở rộng tầm thường T (R, M ) T (U (R), M ), ∆(T (R, M )) = T (∆(R), M )   A M Morita context gồm thành phần A, B vành, N B M ×N → A A MB B NA song mơđun, tồn tích context  A M N × M → B với (ω, z) = ωz (z, ω) = zω , thỏa mãn vành N B kết hợp với phép  toán trên ma trận A M Morita context gọi tầm thường tích context N B tầm thường, nghĩa M N = N M = (xem [?], trang 1993) Ta có   A M N B A M N B  ∼ = T (A × B, M ⊕ N )  Morita context tầm thường theo [?] Định lý Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành   u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R)  u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy     a ¯= 0 + a m a ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 1.Giả sửM (R, S) song mơđun Khi vành ma trận tam giác dạng R M S ∆U -vành R S ∆U -vành Hệ R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ Các đặc trưng ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) 4.1 Các tính chất tổng quát ∆U -vành Bổ đề Cho R vành tùy ý, ta có (1) ∆(R) vành R (2) ∆(R) iđêan R ∆(R) = J(R) (3) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R) Y Y Y (4) Nếu R = Ri tích vành Ri , ∆( Ri ) = ∆(Ri ) i∈I i∈I (5) Nếu R vành nửa địa phương, ∆(R) = J(R) (6) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ) (7) ∆(R[[x]]) = ∆(R)[[x]] Vành R gọi ∆U -vành + ∆(R) = U (R) i∈I Mệnh đề R ∆U -vành U (R) + U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, Lấy u, v ∈ U (R), ta có + u ∈ ∆(R), − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) Các tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R division ring, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R); (4) R Dedekind finite; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể, điều áp dụng cho Z = Z(R) tâm R Chứng minh (1) Hiển nhiên (2) (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành, 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi − ba lũy đẳng R, [b(1 − ba)2 ] = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆ Từ đó, ba ∈ U (R) ba = 48 Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm quaternion Q8 , tính độ giao hốn tương đối nhóm nhóm Q12 cách áp dụng Mệnh đề 17 Ví dụ (i) Với n = 2, xét nhóm quaternion Q8 (cho Ví dụ ??) Các nhóm Q8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; Q8 Khi Pr(R1 , Q8 ) = 2+2 2·2+4 2+1 = , Pr(R2 , Q8 ) = = 1, Pr(R4 , Q8 ) = = 1; 2·2 2·2 4·2 Pr(U2,0 , Q8 ) = Pr(U2,1 , Q8 ) = 2+2+2 = ; Pr(Q8 , Q8 ) = Pr(Q8 ) = 4·2 (ii) Với n = 3, xét nhóm quaternion Q12 = {1, r, r2 , r3 , r4 , r5 , s, rs, r2 s, r3 s, r4 s, r5 s} Các nhóm Q12 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R3 = ⟨r3 ⟩, R6 = {1}; U3,0 = ⟨r3 , s⟩, U3,1 = ⟨r3 , rs⟩, U3,2 = ⟨r3 , r2 s⟩; Q12 Khi Pr(R1 , Q12 ) = 3+1 2·3+2 = , Pr(R2 , Q12 ) = = , 2·3 4·3 3+3 2·3+6 = 1, Pr(R6 , Q12 ) = = 1; 2·3 4·3 3+3+2 Pr(U3,0 , Q12 ) = Pr(U3,1 , Q12 ) = Pr(U3,2 , Q12 ) = = ; 4·3 Pr(Q12 , Q12 ) = Pr(Q12 ) = Pr(R3 , Q12 ) = 49 14 Độ giao hoán tương đối nhóm Ta bắt đầu định nghĩa độ giao hốn nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa Sau số ví dụ độ giao hoán tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 50 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau 51 • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề 36 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh 52 Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 37 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề 3, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| 53 Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hoán tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề 38 Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề ?? ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ?? ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề ?? ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G 54 Theo Bổ đề ?? ta có |CH (y)| |C (y)| ⩾ G với y ∈ G |H| |G| Từ suy Pr(H, G) ⩾ X |CG (y)| X = |CG (y)| = Pr(G) |G| |G| |G| y∈G y∈G Vậy ta có điều phải chứng minh Mệnh đề sau cho ta điều kiện cần đủ để xảy đẳng thức Mệnh đề 39 Cho H nhóm nhóm G Khi (i) Pr(H, G) = Pr(H) G = HCG (x) với x ∈ H (ii) Pr(H, G) = Pr(G) G = HCG (x) với x ∈ G Chứng minh (i) Từ phép chứng minh Mệnh đề ?? ta thấy Pr(H, G) = Pr(H) |CG (x)| |CH (x)| = với x ∈ H |H| |G| Theo Bổ đề ??, điều xảy G = HCG (x) với x ∈ H Vậy ta có điều phải chứng minh (ii) Lập luận hoàn toàn tương tự ta có điều phải chứng minh Từ Mệnh đề ?? ta có hệ sau Hệ Cho H nhóm nhóm G Nếu Pr(H, G) = Pr(G) Pr(H) = Pr(G) Mệnh đề sau cho ta điều kiện đủ để không xảy đẳng thức Mệnh đề ?? Mệnh đề 40 Cho H nhóm nhóm G Nếu H khơng chuẩn tắc G Pr(G) < Pr(H, G) < Pr(H) 55 Chứng minh Giả sử H không chuẩn tắc G Trước tiên ta chứng minh tồn x ∈ H cho G ̸= HCG (x) Thật vậy, giả sử trái lại G = HCG (x) với x ∈ H Lấy g ∈ G x ∈ H Khi g −1 ∈ G = HCG (x) Giả sử g −1 = với h ∈ H, a ∈ CG (x) Khi ta có g −1 xg = (ha)x(ha)−1 = haxa−1 h−1 = hxaa−1 h−1 = hxh−1 ∈ H Điều chứng tỏ H ◁ G, trái với giả thiết Vậy ta có điều phải chứng minh Do đó, theo Bổ đề ?? ta có Pr(H, G) ̸= Pr(H) Pr(H, G) ̸= Pr(G) Kết hợp điều với Mệnh đề ?? ta có bất đẳng thức cần chứng minh 15 Các đặc trưng ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) 15.1 Các tính chất tổng quát ∆U -vành Bổ đề Cho R vành tùy ý, ta có (1) ∆(R) vành R (2) ∆(R) iđêan R ∆(R) = J(R) (3) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R) Y Y Y (4) Nếu R = Ri tích vành Ri , ∆( Ri ) = ∆(Ri ) i∈I i∈I (5) Nếu R vành nửa địa phương, ∆(R) = J(R) (6) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ) (7) ∆(R[[x]]) = ∆(R)[[x]] Vành R gọi ∆U -vành + ∆(R) = U (R) i∈I 56 Mệnh đề 41 R ∆U -vành U (R) + U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, Lấy u, v ∈ U (R), ta có + u ∈ ∆(R), − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) Các tính chất ∆U -vành Mệnh đề 42 Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R division ring, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R); (4) R Dedekind finite; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể, điều áp dụng cho Z = Z(R) tâm R Chứng minh (1) Hiển nhiên (2) (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành, 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi − ba lũy đẳng R, [b(1 − ba)2 ] = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆ Từ đó, ba ∈ U (R) ba = 57 (5) Nếu I ⊆ J(R) ideal, ∆(R/I) = ∆(R)/I Giả sử R ∆U vành Khi u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆(U )vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Giả thiết U (T ) = U (T ) ∩ T nghĩa ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) Định lý 21 Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (⇒:) Giả sử Mn (R) ∆U -vành n > Đầu  tiên ta chứng  0 − a     0 0    minh R division Lấy a ∈ R, a ̸= 0, ta có X =     0 Mn (R) X = DoMn (R) ∆U -vành, ta lấy X ∈∆(Mn (R)) Lấy U=  0 1 0 0  0 0 0         0     ∈ M (R) Khi I − U X =     n n             0 0 0 a khả nghịch Mn (R), hay a ∈ U (R) Do đó, R division Tiếp theo, ta chứng minh R ∼ = F2 Lấy a ∈ R, a ̸= a ̸= Lấy ∈    58  a 0    X=     0 a 0   0  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)    0 a   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề 43 Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Định lý 22 Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành 59   u m ∈ U (T (R, M )) = T (U (R), M ), Chứng minh (:⇒) Lấy u¯ = u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy  a ¯= 0   + a m a  ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 9.Giả sửM (R, S) song mơđun Khi vành ma trận tam giác dạng R M S ∆U -vành R S ∆U -vành Hệ 10 R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ 15.2 Một vài tính chất đại số ∆U -vành Nhớ lại rằng, vành R gọi vành 2-primal nguyên tố N (R) Mệnh đề 44 Cho R vành 2-primal Nếu vành đa thức R[x] ∆U vành, R ∆U -vành Chứng minh R vành 2-primal, theo [10, Mệnh đề 19], ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề 45 Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành 60 Chứng minh (1) Điều suy từ Mệnh đề 2.4(5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]), R ∼ = R[[x]]/(x), kết suy từ Mệnh đề 2.4(5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu thỏa ϵi = idR (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆((R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = + ∆(R), R ∆U -vành Suy y − = i(x) + v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Mệnh đề 46 Cho R vành, M monoid RM monoid ring Nếu RM ∆U -vành, R ∆U -vành Mệnh đề 47 Cho R vành giao hốn có đơn gị Vành đa thức R[x] R ∆U R ∆U 61 15.3 Tính chất ∆U lớp vành Mệnh đề 48 Các điều kiện sau tương đương vành R (1) R ∆U -vành (2) Tất clean elements R ∆-clean Định lý 23 Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Với a ∈ R, ta có a − a2 ∈ ∆(R) a − e ∈ ∆(R) e lũy đẳng, e ∈ R; (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Bổ đề Nếu R vành unit-regular ∆(R) = Định lý 24 Cho R vành, điều sau tương đương (1) R regular ∆U -vành (2) R strongly regular ∆U -vành (3) R unit-regular ∆U -vành (4) R có identity x2 = x (R vành Boolean) Định lý 25 Cho R vành, điều sau tương đương (1) R semiregular ∆U -vành (2) R exchange ∆U -vành (3) R/J(R) vành Boolean Hệ 11 Cho R ∆U -vành, điều sau tương đương (1) R semiregular ring (2) R exchange ring (3) R clean ring 62 16 ĐỊNH LÍ FUBINI Định lý 26 (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) F (x, y)dy dx F (x, y)dxdy = R2n Rn  Z Z Z Rn F (x, y)dx dy =  Z Z Rn Rn Bổ đề 10 Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (19)

Ngày đăng: 03/07/2023, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w