1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Signals 11 XỬ LÝ TÍN HIỆU SỐ

10 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 237,77 KB

Nội dung

INVERSE Z TRANSFORM 8 INVERSE Z TRANSFORM 113 8 INVERSE Z TRANSFORM The process by which a Z transform of a time –series   kx , namely X(z), is returned to the time domain is called the inverse Z[.]

8 INVERSE Z-TRANSFORM INVERSE Z-TRANSFORM The process by which a Z-transform of a time –series xk , namely X(z), is returned to the time domain is called the inverse Z-transform The inverse Z-transform is defined by: xk   Z 1 Xz  Computer study M-file iztrans.m is used to find inverse Z-transform Example 8.1 » syms z k z X( z )  » x=z/(z^2+5*z+6); z  5z  » iztrans(x) xk    2 U s k    3 U s k  k k ans = (-2)^k-(-3)^k Four practican techniques can be used to implement an inverse transform They are: Long divisions Partial fractions Residue theorem Difference equations 8.1 Inverse Z-transforms via long division For causal sequences, the z-transform X(z) can be expended into a power serises in z 1 For a rational X(z), a convenient way to determine the power serise is an expansion by long division b z n  b n 1z n 1   b1 z  b X( z )  n n  c  c1z 1  c z 2  z  a n 1z n 1   a 1z  a where c , c1 , c are power serise coefficients z Example 8.2 X( z )  z  1.414z 1  z z-1.414+z-1 1.414-z-1 1.414-2z-1+1.414z-2 z-1-1.414z-2 z-1-1.414z-2+z-3 -z-3 -z-3+1.414z-4-z-5 z2-1.414z+1 z-1+1.414z-2+z-3-z-5 X[k]=[k-1]+1.414[k-2]+  [k-3]+0-[k-5] 113 INVERSE Z-TRANSFORM Computer study The inverse of a rational z-transform can also be readıly calculated using MATLAB The function impz can be utilized for this purpose Three versions of this function are as follows:  [h,t]=impz(num,den)  [h,t]=impz(num,den, L)  [h,t]=impz(num,den, L, FT) Where the input data consists of the vector num and den containing the coefficients of the numerator and the denominator polynomials of the z-transform given in the descending powers of z, the output impulse response vector h, and the time index vector t The first form, the length L of h is determined automatically by the computer with t=0:L-1, whereas in the remaining two forms it is supplied by the user through the input data L In the last form, the sampling interval is The default value of FT is The following two FT examples show application h, t   impznum, den file to and plot power X ( z)  Example 8.3 » num=[1 0]; » den=[1 -1.414 +1]; » L=8; » [x,k]=impz(num,den,L) x= 1.0000 1.4140 0.9994 -0.0009 -1.0006 -1.4140 -0.9988 0.0017 k= » stem(k,x,’fill’,’k’) z z  1.414 z  Power series coefficiens for X ( z)  z z  1.414 z  1.5 0.5 -0.5 -1 -1.5 k 114 INVERSE Z-TRANSFORM X ( z)  z  z 1 z  3z  Example 8.4 » num=[1 -1]; » den= [2 1]; » L=10; » [x,t]=impz(num,den,L) x= 0.5000 -0.2500 -0.3750 0.6875 -0.8438 0.9219 -0.9609 0.9805 -0.9902 0.9951 » stem(k,x,’fill’,’k’) z  z 1 Power series coefficients for X ( z )  2 z  3z  1 0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 -1 8.2 The Inverse Z-Transform Using Partial Fractions We now derive the expression for the inverse z-transform and outline the two methods for its computation Recall that, for z  re j , the z-transform G(z) given by the equation is merely the Fourier transform of the modified sequence gk r  k Accordingly, by the inverse Fourier transform, we have:  k gk  r  G (re j )e jk d (8.2)  2   By making the change of variable z  re j , the above equation can be converted into a contour integral given by : gk  residues of G(z)z k 1at the poles inside C (8.3) Note that theequation mentioned above needs to be equated at all values of k which can be quite complicated in most cases A rational G(z) can be expressed as: P( z) G (z)  D( z )   115 INVERSE Z-TRANSFORM where P(z) and D(z) are the polynomials in z 1 If the degree M of the numerator polynomial P(z) is grester than or equal to the degree N of the denominator polynomial D(z), we can divide P(z) by D(z) and re-express G(z) as: M N P ( z) G ( z )   z  k  D( z ) i 0 where the degree of the polynomial P1 (z) is less that that of D(z) The rational function P1(z) is called a proper fraction D( z ) The expression of Eq (8.2) can be computed in a number of ways Consider the following cases: Case 1: G(z) is a proper fraction with simple poles Let the poles of G(z) be at z  p k , k=1,2,3,……,N, where pk are distinct A partial-fraction expansion of G(z) then is of the form : N az (8.4) G (z)   i k 1 z  p i where the constants  l in the above expression, called the residues, are given by: G (z) (8.5) a i  (z  p i ) z z  pi Each term of the sum on the right-hand side of Eq.(8.4) has an ROC given by z  pk, therefore, the inverse transform g[k] of G(z) is given by N gk    a i p i U s k  k k 1 Note that the above approach with slight modifications can also be used to determine the inverse z-transform of a noncausal sequence with a rational z-transform Example 8.5 Let the z-transform of a causal sequence g[k] be given by : z(z  2.0) (z  0.2)(z  0.6) az a 2z G (z)   z  0.2 z  0.6 z  2.0 2.2 a  (z  0.2)   2.75 (z  0.2)(z  0.6) z 0.2 0.8 G (z)  a  (z  0.6)  (z  2.0) (z  0.2)(z  0.6) z  0.6  1.4  1.75  0.8  gk   2.75(0.2) k  1.75(0.6) k U s k  Example 8.6 Using MATLAB determine the partial fraction expansion of X(z): X( z )  3z  12 2z  3.5z  1.5 116 INVERSE Z-TRANSFORM num=[3 0 12];den=[2 -3.5 -1.5]; » [r,p,k]=residuez(num,den) r= 1.9219 3.7891 - 0.3013i 3.7891 + 0.3013i p= 1.9477 -0.0989 - 0.6126i 3.6 2.625 -0.0989 + 0.6126i 2.47 X( z)    k= z  1.5 z  z  0.5 -8 » r=[ 1.9219 3.7891 - 0.3013i + 0.3013i]; 1.5z  3.7891 6z (z)  -3 0.6126i -0.0989 + » p=[ 1.9477 X -0.0989 z  1.75z  0.75 0.6126i]; » [num,den]=residuez(r,p,k) num = 1.5001 -0.0000 0.0008 5.9999 den = 1.0000 -1.7499 -0.0000 -0.7500 Multiplying the numerator and the denominator by G (z)  3z  12 2z  3.5z  1.5 Case G(z) has multiple poles, for example, if the pole at z   is of multiplicity r and the remaining N-r poles are simple and at z  p k , k  1,2,3, N  r, then the general partial-fraction expansion of G(z) takes the form G (z)  MN a k 0 Nr k z k  k i r akz z   a ri z  p k i 1 (1  z 1 ) i where the constant ari (no longer called the residues for i1) are computed using the formula: d r i  G (z)  a ri  ( z  ) r , i=1,2,3,… ,r r i  (r  i)! d(z)  z  z  Example 8.7 a z a z z2 X(z)  21  22 X(z)  ; (z  1) (z  1) (z  1) a a 22 X( z )  21  ; z (z  1) (z  1) a0  zX(z)  0; z d z  1 X(z) d  z 1 dz z dz z 1 z 1 a 22  a 21  117 (z  1) X(z) 1 z z 1 INVERSE Z-TRANSFORM Which results in the following time-series xk   1  k u s k  z Example 8.8 G (z)  (z  0.5)(z  1) G ( z) G (z) a  (z  0.5)  4; a 22  (z  1)  2; z z 0.5 z z 1 a 21  d  G (z)  ( z  )  4 dz  z  z 1 0.5 z z z 4 2 z  0.5 z 1 (z  1) Consider the following three cases: 1) z1 g[k]  4(0.5) k Uk  4Uk   2kUk  2) z U s k   U s  k  1 G ( z)  1.0 z1 0.5 g[k]  4(0.5) k U s  k  1  4U s  k  1  2kU s  k  1 3) z1 g[k]  4(0.5) k U s k   4U s k  1  2kU s  k  1 1.0 z 0.5 1.0 Example 8.9 3z  5z  3z (z  1) (z  0.5) a z a z a z X(z)  11  21  22 z  0.5 z  (z  1) X( z)  z1 where a 11z /( z  0.5) an exponential, a 21z /( z  1) a step function, and a 22z /( z  1) a ramp function What is desired, however, is the partial fraction expansion of X(z)/z, where: a 11 a a 22 X( z)   21  z z  0.5 z  (z  1) where a1  (z  0.5)X(z) 3z  5z  3z  z z(z  1) z 0.5 a 22  (z  1) X(z) 3z  5z  3z  z z(z  / 2) z 1 5 z 0.5 2 z 1  9z  10  2(3z  5z  3)(z  / 4)  d (z  1) X(z)     2 dz z z ( z  / ) ( z ( z  / ))   z 1 z 1 which results in a 21  118 INVERSE Z-TRANSFORM   xk   5(0.5) k   2k u s k  Example 8.10 18z Solve using Matlab: H( z )  18z  3z  4z  0.24 0.4 0.36 H( z )    1 1 z  0.5  0.33z (1  0.33z ) » num=[18]; den=[18 -4 -1]; » [r,p,k]=residuez(num,den) r= 0.2400 0.4000 0.3600 p= -0.3333 -0.3333 0.5000 k =[] » [num,den]=residuez(r,p,k) num = 1.0000 0.0000 0.0000 den = 1.0000 0.1667 -0.2222 -0.0556 Using the numerator and the denominator coefficients we have: X( z )  z3 z  0.1667z  0.2222z  0.0556 It can be seen that the coefficients will be same as in the equation of the question if we multiply each coefficient by 18 Example 8.11 Find the inverse Z-transform of X( z)  (z  1) (z  0.5)(z  0.5) a1 a 21 a 22 X( z) a     z z (z  0.5) (z  0.5) (z  0.5) a0  zX(z) z 0  z 119 INVERSE Z-TRANSFORM (z  0.5)X(z) a1  z a 22  (z  0.5)(z  1) z  0.5  (z  0.5) (z  0.5) X(z) z z  0.5  (z  1) (z  0.5) z  0.5  z  0.5  27 d (z  0.5) X(z) d (z  1) 27  z  0.5 z  0.5   dz z dz (z  0.5) X( z ) z 27 z 27 z 8   z (z  0.5) (z  0.5) (z  0.5) a 21  27 27 1  xk   8k    (0.5) k  (0.5) k  k (0.5) k  U s k  4 4  » num=[1 3 1]; den=poly([0 -0.5 0.5 0.5]) den = 1.0000 -0.5000 -0.2500 0.1250 » [r,p,k]=residue(num,den) r= -0.2500 -6.7500 6.7500 8.0000 p= -0.5000 0.5000 0.5000 k = [] Case X(z) has a complex pole  Example 8.12 The second-order X(z)  (3z  1.5z) /( z  cos( )z  / 4) has non repeated complex roots The partial expansion of X(z) is defined by: z z  a2 ( z  ) (z   * ) a1 a2 X( z)   z ( z  ) ( z   * ) X( z )  a where =0.433  j0.25 and a1  ( z  ) X( z) (3z  1.5z)  z z(z   * ) z  z  120 INVERSE Z-TRANSFORM a2  ( z   * ) X( z ) (3z  1.5z) *   a1 z z(z  ) z * z  * Also note that   x k   Z 1    k uk   z     and x k   Z 1   ( * ) k uk  * z    Where =0.433013-j0.25=0.5exp(-j/6) Therefore, z z X( z )  a  a 1* z  0.5 exp( j / 6) z  0.5 exp( j / 6) which corresponds to a time-series, for k0 k k 1 1 xk   1.55 exp(  j / 12)  exp(  jk / 6)  1.55 exp( j / 12)  exp( jk / 6) 2 2 k 1  1.55  (exp(  jk /  j / 12)  exp( jk /   / 12)) 2 k 1  3.1  cos(k /   / 12) 2 which is seen to be a causal phase-shifted cosine wave with an exponentially descending envelope Also observe that x0  3.1cos( / 12)  , which can be verified using the initial value theorem 8.3 Difference Equations Long division can be intensive and tedious computational process If a computer-based signal processing is desired, the use of difference equation is generally more efficient Assume that the Z-transform of a time series is xk  is X(z), where M X(z)   bi z i  aiz i i 0 N i 0 Recall that the Zk   and Zk  n   z  n Therefore, it follows that: a xk   a xk  1   a M 1 xk  (M  1)  a M xk  M  b k   b1k  1   b N 1k  ( N  1)  b N k  N 121 INVERSE Z-TRANSFORM The response xk  can be simulated by implementing the difference equation Example 8.13 Consider causal 3z  5z  3z X( z )  (z  1)(z  0.5) from example 11 X( z )  3z  5z  3z  5z 1  3z 2  5z 1  3z 2   z  2.5z  2z  0.5 (1  z 1 ) (1  0.5z 1 )  2.5z 1  2z 2  0.5z 3 Which produces a time-serises xk   (5(0.5) k   2k)u s k  Then xk  , for k  , can be simulated using xk  2.5xk  1  2xk  2  0.5xk  3  3k  5k  1  3k  2 122

Ngày đăng: 15/04/2023, 20:53

w