Bµi 1 NguyÔn Th¸i Hßa §¹i sè tæ hîp Chuyªn ®Ò ®¹i sè tæ hîp Bµi 1 TÝnh tæng c¸c sè tù nhiªn gåm 5 ch÷ sè kh¸c nhau ®«i mét ®îc thµnh lËp tõ 6 ch÷ sè 1, 3, 4, 5, 7, 8 Bµi 2 Cho 8 ch÷ sè 0, 1, 2, 3, 4,[.]
Nguyễn Thái Hòa Đại số tổ hợp Chuyên đề: đại số tổ hợp Bài Tính tổng số tự nhiên gồm chữ số khác đôi đợc thành lập từ chữ số 1, 3, 4, 5, 7, Bài Cho chữ số 0, 1, 2, 3, 4, 5, 6, Hái cã thÓ lËp đợc số gồm chữ số khác đôi từ chữ số thiết phải có mặt chữ số Bài Cho ch÷ sè 0, 1, 2, 3, 4, 5, 6, Hỏi lập đợc số gồm chữ số khác đôi từ chữ số thiết phải có mặt chữ số Bài Từ ch÷ sè 1, 2, 3, 4, 5, 6, 7, 8, thiết lập tất số có chín chữ số khác Hỏi số đà thiết lập có số mà chữ số chín đứng vị trí Bài Từ chữ số 1, 2, 3, 4, 5, thiÕt lËp tÊt c¶ số gồm chữ số khác Hỏi số đà thiết lập đợc, có số mà hai chữ số không đứng cạnh nhau? Bài Cho chữ số 0, 1, 2, 3, 4, Hỏi lập đợc số tự nhiên chẵn, số gồm chữ số khác chữ số phải khác Bài Trong khai triĨn cđa 1 x 3 10 thành đa thức a a1 x a10 x 10 sè a k lín nhÊt Bµi Cho n lµ số nguyên dơng cố định Chứng minh số tự nhiên không vợt n Bµi 2002 CMR: C 2003 C 2003 C 2003 2002 C 2003 C nk H·y t×m hƯ lín nhÊt nÕu k lµ 2 2002 (2 2003 1) Bµi 10 5C 90 2 A Giải hệ phơng trình: 2C 80 A Bài 11 Cho chữ số 0, 1, 2, 3, 4, 5, 6, Có thể lập đợc số gồm 10 chữ số đợc chọn từ chữ số trên, chữ số có mặt lần, chữ số khác có mặt lần Bài 12 y x y x y x y x ĐT: 0989200410 Nguyễn Thái Hòa Đại số tổ hợp Cho chữ số 0, 1, 2, 3, 4, 5, Hỏi lập đợc số gồm chữ số khác đôi từ chữ số thiết phải có mặt chữ số Bài 13 Trên mặt phẳng cho thập giác lồi A1 A2 A10 Xét tất tam giác đợc tạo từ đỉnh thập giác Hỏi tất tam giác đó, có tam giác mà ba cạnh cạnh thập giác? Bài 14 Tìm số âm dẫy sè x n víi x n An44 143 Pn 2 Pn Bµi 15 CMR: C n1 n 2C n2 n 3C n3 n nC nn n.4 n ; (n 1) Bài 16 a/ Có thể tìm đợc số gồm ba chữ số khác đôi b/ Từ chữ số 0, 1, 2, 3, 4, 5, 6, lập đợc số chẵn có chữ số khác đôi một? Bài 17 Một đội văn nghệ có 10 ngời có nữ bốn nam a/ Có cách chia đội văn nghƯ thµnh hai nhãm cã sè ngêi b»ng vµ nhóm có số nữ b/ Có cách chọn ngời mà có không nam Bài 18 Giải phơng trình: Px Ax2 72 6( Ax2 Px ) Bài 19 CMR: với n số tự nhiên n 2 ta cã: Bµi 20 CMR: 1 n n A2 A3 An Anm Anm mAnm11 Bài 21 a/ Có số tự nhiên chẵn có ba chữ số khác đợc tạo thành từ chữ số 1, 2, 3, 4, 5? b/ Có số tự nhiên có ba chữ số khác đợc tạo thành từ chữ số 1, 2, 3, 4, 5, mà số nhỏ 345? Bài 22 Cho A tập hợp gồm 20 phần tử a/ Có tập hợp cđa tËp A? b/ Cã bao nhiªu tËp tập A mà số phần tử số chẵn? Bài 23 a/ Từ chữ số 4, 5, 6, lập đợc số có chữ số phân biệt? b/ Từ chữ số 0, 1, 2, 3, 4, lập đợc số chẵn gồm chữ số đôi khác nhau? Bài 24 Với n số tự nhiên, hÃy tính tổng: ĐT: 0989200410 Nguyễn Thái Hòa Đại sè tỉ hỵp 1 1 C n0 C n1 C n2 2 C n3 C nn n n Bài 25 Với n số tự nhiên, hÃy tính tổng: Bài 26 C n0 1 C n C n ( 1) n C nn n 1 Chøng minh r»ng víi mäi sè x, ta cã: x n 2n n C k n ( x 1) k , với n số tự k nhiên Bài 27 a/ Có số tự nhiên chẵn gồm chữ số khác đôi có chữ số đứng đầu chữ số 2? b/ Có số tự nhiên gồm chữ số khác đôi một, cho chữ số có chữ số chẵn chữ số lẻ? Bài 28 HÃy tìm số n nguyên dơng thoả mÃn đẳng thức: C n4 C n3 An2 0 Bµi 29 TÝnh tæng: S 26 25 23 2 20 C6 C6 C6 C6 C6 C6 C6 Bài 30 Cho đa thức P( x) (3x 2)10 a/ T×m hƯ sè cđa x2 khai triĨn cđa P(x) b/ TÝnh tỉng cđa c¸c hƯ sè khai triển P(x) Bài 31 Cho tập hợp X 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Hái cã bao nhiªu tËp Y cđa X cho vµ thc Y, không thuộc Y, đồng thời có số 2, 3, thuộc Y? Bài 32 Giải phơng trình: 14 x x x C5 C6 C7 Bµi 33 Cho tËp hỵp A 1, 2, 3, 4, 5 Hái: a/ Có số tự nhiên có bốn chữ số khác đôi đợc lập từ phần tử A b/ Trong số tự nhiên câu a) có chữ số bắt đầu chữ số Bài 34 Một lớp học có 10 học sinh nam 10 học sinh nữ Cần chọn ngời lớp để làm công tác phong trào Mùa hè xanh Hỏi có cách chọn ngời phải có nhất: a/ Hai học sinh nữ hai học sinh nam b/ Một học sinh nữ học sinh nam Bài 35 ĐT: 0989200410 Nguyễn Thái Hòa Đại số tổ hợp Một hộp đựng 10 viên bi, có viên bi xanh viên bi đỏ Hỏi có cách lấy đồng thời từ hộp viên bi có: a/ Đúng hai viên bi màu xanh b/ hai viên bi màu xanh Bài 36 Từ chữ số 1, 5, 6, lập đợc số tự nhiên có bốn chữ số? Bài 37 Từ chữ sè 0, 1, 2, 3, 4, 5, cã thÓ lập đợc số tự nhiên chẵn có ba chữ số? Bài 38 Có số tự nhiên chẵn gồm hai chữ số, chữ số chẵn? Bài 39 Có số tự nhiên gồm năm chữ số, chữ số cách chữ số đứng giống nhau? Bài 40 Có số tự nhiên có sáu chữ số chia hết cho 5? Bài 41 Một đội văn nghệ đà chuẩn bị đợc hai kịch, ba điệu múa hát Tại hội diễn, đội đợc phép trình diễn kịch, điệu múa hát Hỏi đội văn nghệ có cách chọn chơng trình biểu diễn, biết chất lợng kịch, điệu múa, hát nh nhau? Bài 42 Từ thành phố A đến thành phố B có ba đờng, từ thành phố A đến thành phố C có hai đờng, từ thành phố B đến thành phố D có hai đờng, từ thành phố C đến thành phố D có ba đờng Không có đờng nµo nèi thµnh B víi C Hái cã đờng từ thành phố A đến thành phố D? Bài 43 Giải phơng trình: 3Px A3x Bài 44 Có số tự nhiên gồm ba chữ số khác khác chữ số tổng ba chữ số 8? Bài 45 CMR: a/ C nk n k C nk k k n k1 n b/ C C C nk 21 C kk11 ; (k n) Bµi 46 Có cách xếp chỗ ngồi cho ngời khách vào ghế xếp thành dÃy? Bài 47 Có đờng chéo hình thập giác lồi? Bài 48 Có cách phân phối đồ vật khác cho ba ngời, cho: a/ Một ngời nhận đợc đồ vật, hai ngời ngời nhận đợc đồ vật? b/ Mỗi ngời nhận đợc đồ vật? ĐT: 0989200410 Nguyễn Thái Hòa Đại số tổ hợp Bài 49 Khai triÓn: a/ ( x y ) ; b/ ( x ) x Bài 50 Tính tổng sau đây: S C50 2C51 22 C52 23 C53 24 C54 25 C55 Bµi 51 CMR: a/ C 20 p C 22p C 24p C 22pp C 21 p C 23 p C 25 p C 22pp b/ C 20p C 22p C 24p C 22pp 2 p Bài 52 Giải bất phơng trình: An44 15 ( n 2)! ( n 1)! Bµi 53 Giải phơng trình: Pn 240 Ank33 Pn k Bài 54 Có số chẵn gồm hai chữ số Bài 55 Một chi đoàn niên có 50 đoàn viên Hỏi có cách phân công ba đoàn viên phụ trách ba nhóm thiếu nhi (mỗi đoàn viên phụ trách ba nhóm đó)? Bài 56 Trong đua ngựa, có 12 ngựa xuất phát Hỏi có khả xếp loại: a/ Ba nhất, nhì, ba? b/ Ba đích đầu tiên? Bài 57 CMR: C n1 C n2 C n3 ( 1) p C np ( 1) p C np Bài 58 Cho khai triển nhị thøc: n n n n x x x x2 3x 3x 0 1 n 2 C C 2 C (n lµ sè nguyên dơng) n n n Biết khai triển Cn3 5Cn1 , số hạng thứ t 20n, tìm n x Bài 59 Tìm hệ số số hạng chứa x8 khai triển nhị thức Niutơn ( x5 ) n , x3 biÕt r»ng Cnn41 Cnn3 7(n 3) ( n số nguyên dơng, x>0, Cnk tổ hợp chập k n phần tử) ĐT: 0989200410 Nguyễn Thái Hòa Đại số tổ hợp Bài 60 Với n số nguyên dơng, gọi a3n lµ hƯ sè cđa x3n khai triĨn thành đa thức ( x 1) n ( x 2) n Tìm n để a3n 26n Bài 61 Tìm hệ số số hạng chứa x8 khai triển nhị thức Niutơn cña ( x5 ) n x3 , biÕt r»ng Cnn41 Cnn3 7(n 3) ( n lµ số nguyên dơng, x>0, Cnk tổ hợp chập k n phần tử) Bài 62 k k 1000 1001 Chøng minh r»ng: C2001 C2001 C2001 C2001 , k 2000 Bài 63 Giải bất phơng tr×nh: A2 x Ax2 C x3 10 x Bµi 64 28 Trong khai triĨn nhÞ thøc ( x x x 15 ) n HÃy tìm số hạng không phô thuéc x, biÕt r»ng: Cnn Cnn Cnn 79 Bài 65 Biết tổng tất hệ số khai triển nhị thức ( x 1)n b»ng 1024, h·y t×m hƯ sè a số hạng ax12 khai triển Bài 66 Mét líp cã 30 häc sinh nam vµ 15 häc sinh nữ Có học sinh đợc chọn để lập tốp ca Hỏi có cách chọn khác 1/ Nếu phải có hai nữ 2/ Nếu chọn tuỳ ý Bài 67 Cho chữ số 0, 1, 2, 3, Từ số đà cho lập đợc 1/ Bao nhiêu số chẵn có bốn chữ số bốn chữ số khác đôi 2/ Bao nhiêu số chia hết cho 5, có ba chữ số ba chữ số khác đôi 3/ Bao nhiêu chữ số chia hết cho 9, có ba chữ số ba chữ số khác đôi Bài 68 Một đội văn nghệ có 20 ngời, có 10 nam 10 nữ Hỏi có cách chọn ngời cho: 1/ Có hai nam 2/ Cã Ýt nhÊt hai nam vµ Ýt nữ Bài 69 Chứng minh rằng: 1 1 ( 1) n n Cn Cn Cn Cn 2(n 1) 2(n 1) ĐT: 0989200410 Nguyễn Thái Hòa Đại số tổ hợp (Gợi ý: Sử dụng tích phân I x(1 x ) n dx ) Bµi 70 n 1 Chøng minh r»ng: Cn1 Cn2 Cnn n 1 n 1 (Gỵi ý: Sư dơng tÝch ph©n I (1 x)n dx ) Bài 71 Khai triển đa thức: P( x) (1 x)12 thành dạng: a0 a1 x a2 x a12 x12 T×m max(a1 , a2 , , a12 ) Bµi 72 Tìm hệ số x31 khai triển nhị thøc cña f ( x) ( x ) 40 x Bài 73 Một thầy giáo có 12 sách đôi khác nhau, có văn học, sách âm nhạc sách hội họa Ông muốn lấy đem tặng cho học sinh A, B, C, D, E, F cho em 1/ Giả sử thầy giáo muốn tặng cho em học sinh sách thuộc hai thể loại văn học âm nhạc Hỏi có tất cách tặng? 2/ Giả sử thầy giáo muốn tặng sách song, ba thể loại văn học, âm nhạc hội họa Hỏi có cách tặng? Bài 74 TÝnh tæng: S Cn0 Cn1 Cn2 Cnn n 1 Bµi 75 Cnk 2n 1 n 1 k 0 k n Chøng minh r»ng: Bµi 76 Chøng minh r»ng: 1/ Cn0 Cn1 Cn2 Cnn 2n 2/ C21n C23n C25n C22nn C20n C22n C24n C22nn Bµi 77 2000 TÝnh tæng: S C2000 2C2000 3C2000 2000C2000 §T: 0989200410