Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hì[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B bc > C ad > D ac < Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 360 C 450 D 300 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H4) C (H3) D (H2) Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến (0; +∞) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; −3; −1) D M ′ (−2; 3; 1) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = [ 0; +∞) D S = (−∞; ln3) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = − A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến R Câu 10 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C m ∈ (0; 2) D −1 < m < Câu 11 Hàm số sau khơng có cực trị? A y = x2 B y = cos x C y = x − 6x + 12x − D y = x4 + 3x2 + Câu 12 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (0; −2; 0) C (0; 2; 0) D (−2; 0; 0) R1 √3 Câu 13 Tính I = 7x + 1dx 45 A I = 28 B I = 60 28 C I = 20 D I = 21 Trang 1/5 Mã đề 001 Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 600 C 300 D 450 Câu 15 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π C 3π D √ A B 3π 3 Câu 16 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a a 3a 2a A B √ D √ C 5 Câu 17 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m < −3 B m > −4 C −4 < m ≤ −3 D −4 ≤ m < −3 Câu 18 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 364 B S = 1979 C S = 84 D S = 96 Câu 19 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại Câu 20 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; 3); R = B I(1; 2; −3); R = C I(1; −2; 3); R = D I(−1; 2; −3); R = Câu 21 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 22 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x + C B cos 3xdx = sin 3x + C A cos 3xdx = R R sin 3x C cos 3xdx = sin 3x + C D cos 3xdx = − + C Câu 23 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 2a3 C 27a3 D 3a3 Câu 24 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C [−3; 3] D (0; 3] Câu 25 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 x Câu 26 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m < −3 B m ≤ C m ≤ −2 D m ≥ −8 Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; 1; 3) B (1; −1; 1) C (−1; 1; 1) D (1; −2; −3) Trang 2/5 Mã đề 001 1 + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) B M = C M = loga x 2loga x Câu 28 Rút gọn biểu thức M = A M = k(k + 1) 3loga x D M = 4k(k + 1) loga x 3x − ≤ là: Câu 29 Tập nghiệm bất phương trình log4 (3 − 1).log 16 4 A S = [1; 2] B S = (0; 1] ∪ [2; +∞) C S = (1; 2) D S = (−∞; 1] ∪ [2; +∞) x Câu 30 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = 2x4 + 4x2 + C y = x4 + 2x2 − Câu 31 Cho R4 f (x)dx = 10 −1 A R4 B f (x)dx = Tính R1 D y = −x4 − 2x2 − f (x)dx −1 C −2 D 18 Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 13 3a 10 3a 13 B C D A 13 20 26 Câu 33 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Câu 34 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 4a3 B 9a3 C 6a3 D 3a3 Câu 35 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 6π D 12π Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t D C A B z = −4 − 5t z = − 5t z = + 5t z = − 5t Câu 37 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 38 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 64 B 128 C x2 )=8 D 32 3x Câu 39 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C m = −2 D Không tồn m Trang 3/5 Mã đề 001 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 40 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) C 2→ −u + 3→ −v = (1; 13; 16) D 2→ Câu 41 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D 2 Câu 42 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 43 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B 5x5 − sin x + C C x5 + sin x + C D x5 − sin x + C Câu 44 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 45 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D Câu 46 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho A 6a3 B a3 C 2a3 D 2a3 Câu 47 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C 3a D − → Câu 48 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 60◦ C 90◦ D 30◦ Câu 49 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −6 C −4 D −8 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001