1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (608)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 122,11 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B C D A − 6 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + C y = −x4 + 2x2 + D y = x4 + 2x2 + Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 36 D yCD = 52 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D m < A Không tồn m B < m < 3 ′′ Câu Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = −1 C f (−1) = −5 D f (−1) = Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 D ( ; +∞) A [22; +∞) B ( ; 2] [22; +∞) C [ ; 2] [22; +∞) 4 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C −3 sin 3x + C D sin 3x + C 3 2 Câu Có cặp số nguyên (x; y) thỏa mãnlog3 (x + y + x) + log2 (x + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 90 C 49 D 89 Câu 10 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = sinx + x2 + C D f (x) = −sinx + + C 2x + Câu 11 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = B y = − C y = D y = − 3 3 Câu 12 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 13 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 2 A a B a C a D 2a 3 Trang 1/5 Mã đề 001 Câu 14 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 D A −3 B −2 C Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Câu 16 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C −77 D 36 Câu 17 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi √ mô-đun số phức w = 6z − 25i A 13 B C 29 D Câu 18 √ z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + 2i, B 10 C 130 D 30 A 10 Câu 19 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z + z + D z2 + 2z + Câu 20 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B C −9 D 10 Câu 21 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = 2i C P = D P = Câu 22 Cho hai √ √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = 13 − 2i (1 − i)(2 + i) + Câu 23 Phần thực số phức z = 2−i + 3i 11 29 29 11 B − C − D A 13 13 13 13 2017 (1 + i) Câu 24 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C 21008 D Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B z · z = a2 − b2 C z − z = 2a D |z2 | = |z|2 Câu 26 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) C F ′ (x) + C = f (x) D F(x) = f ′ (x) + C R2 Câu 27 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2024 B C 2025 D −2024 Câu 28 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx + cosx + C D F(x) = sinx − cosx + C Câu 29 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = − cos(2023x) B f (x) = 2023cos(2023x) 2023 C f (x) = cos(2023x) D f (x) = −2023cos(2023x) Câu 30 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 x + C B (x + 1) x + C C x2 + x+1 + C D (x − 1) x + C x+1 Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = 2 C (x − 2) + y + z = D (x − 2)2 + y2 + z2 = Trang 2/5 Mã đề 001 Câu 32 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z + = C −2x + y − z + = D −2x + y − z − = R Câu 33 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 cos + C x C I = xsinx + cosx + C D I = x sin + C z số thực Giá trị lớn Câu 34 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức √ M = |z + − i| √ A B C 2 D Câu 35 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C 21008 D −22016 √ Giá trị lớn biểu thức Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = (|z| − 2)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 4)2 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = 26 C P = D P = + Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 29 23 25 A B C D 4 4 Câu 44 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 45 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y x y C Nếu a > a > a ⇔ x < y D Nếu a > a x > ay ⇔ x > y Trang 3/5 Mã đề 001 Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) A 2→ −u + 3→ −v = (1; 13; 16) B 2→ −u + 3→ −v = (1; 14; 15) C 2→ −u + 3→ −v = (2; 14; 14) D 2→ Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 49 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B m > −2 C −3 ≤ m ≤ D −4 ≤ m ≤ −1 Câu 50 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 B R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx 1 C R3 D R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R3 |x − 2x|dx = − 2 R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 16:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN