Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = − sin3x[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = −cos2 x sin x + C D R sin2 x cos x = Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x2 B y = tan x D y = x4 + 3x2 + sin3 x + C Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 600 C 450 D 360 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B ∀m ∈ R C −4 < m < D < m , Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; 21; 21) C C(6; −17; 21) D C(8; ; 19) ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B ab < C bc > D ad > Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a 5a a 2a D √ A B C √ 5 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường elip D Đường tròn Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x ′ ′ ′ Câu 10 Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a a 2a 3a A B √ C √ D 5 √ Câu 11 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π A V = B V = π C V = D V = 3 Câu 12 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = −2 C m = 13 D m = Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2) Câu 14 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ 0; +∞) C S = (−∞; 2) D S = [ -ln3; +∞) Câu 15 Số nghiệm phương trình x + 5.3 x − = A B C Câu R16 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x C sin2 x cos x = − + C D sin2 x cos x = cos2 x sin x + C R sin3 x D sin2 x cos x = + C − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 17 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ √ → − → → − → → − −a = − − A b ⊥ c B c = C b ⊥ a D → Câu 18 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = −5 B R C S = D S = Câu 19 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A m > −4 B −4 ≤ m < −3 C −4 < m ≤ −3 D −4 < m < −3 Câu 20 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (2; +∞) B (0; 2) C (−∞; −2) D (−2; 0) Câu 21 Biết R3 f (x)dx = A −2 R3 g(x)dx = Khi B R3 [ f (x) + g(x)]dx C D Câu 22 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B 3x − 4y + 6z + 34 = C x − 2y − 2z − = D −x + 2y + 2z + = −a = (4; −6; 2) Phương Câu 23 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = −1 + t C x = −2 + 2ty = −3tz = + t B x = −2 + 4ty = −6tz = + 2t D x = + 2ty = −3tz = + t Câu 24 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 25 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−1; +∞) B S = (−4; −1) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: B loga = a loga a = A loga xn = log x , (x > 0, n , 0) an C loga (xy) = loga x.loga y D loga x có nghĩa với ∀x ∈ R Trang 2/5 Mã đề 001 Câu 27 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 43.091.358 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 28 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 3a 13 a B C D A 20 26 13 Câu 29 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 49m B 50m C 47m D 48m Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (−2; 3; 5) C (−2; 2; 6) D (4; −6; 8) Câu 31 Cho hàm số y = x −3x Tính y′ A y′ = x −3x ln C y′ = (2x − 3)5 x −3x B y′ = (2x − 3)5 x −3x ln D y′ = (x2 − 3x)5 x −3x ln Câu 32 Tập xác định hàm số y = logπ (3 x − 3) là: A (1; +∞) B Đáp án khác C (3; +∞) D [1; +∞) Câu 33 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + 2πR2 C S = πRh + πR2 D S = πRl + πR2 Câu 34 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π B C 6π D A 5 Câu 35 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 36 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −10 D m = m = −16 Câu 37 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = x3 − 3x2 C y = −x4 + 2x2 + D y = −2x4 + 4x2 R ax + b 2x Câu 38 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 39 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y x y C Nếu a < a > a ⇔ x < y D Nếu a > a x > ay ⇔ x < y Câu 40 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y + 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 3/5 Mã đề 001 Câu 41 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 a 15 3a 3a A B C D 10 Câu 42 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho A 2a3 B 2a3 C a3 D 6a3 Câu 43 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 12 D 18 Câu 44 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (1; −4) Câu 45 Cho hàm số f (x) liên tục R C (−1; −4) R2 ( f (x) + 2x) = Tính A −1 B D (0; −3) R2 f (x) C −9 D Câu 46 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 13 C 17 D 20 Câu 47 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = − ty = tz = + t C x = + ty = tz = − t D x = + 2ty = 2tz = + t Câu 48 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành Câu 49 Cho hàm số y = A (3; ) B (2 ; 0) C (0 ; −2) D (0 ; 3) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001