Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ′ Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 2π C 3π D π Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π B V = C V = D V = A V = 5 3 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại √ tứ diện √ √ tiếp tam giác BCD có chiều cao chiều cao √ π 3.a2 2π 2.a2 π 2.a2 A B π 3.a C D 3 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D 2x + 2017 (1) Mệnh đề đúng? Câu Cho hàm số y = x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = tiệm cận đứng Câu Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; −2) D I(0; 1; 2) Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln(6a2 ) C ln D ln ′ ′ ′ Câu 10 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho Trang 1/5 Mã đề 001 √ √ a A 2 B a √ C a D √ 2a Câu 11 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 90◦ D 30◦ Câu 12 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 14 C 11 + D 28 Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n1 = (−1; 1; 1) C → n3 = (1; 1; 1) D → n4 = (1; 1; −1) Câu 14 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (3; +∞) C (12; +∞) D (−∞; 3) Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 16 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 225 C 105 D 210 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 17 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 18 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = + i C P = D P = z2 Câu 19 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 13 C D 11 A Câu 20 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 A |z| = 34 B |z| = 34 C |z| = √ 34 D |z| = Câu 21 √ z(1 + 3i) = 17 + i Khi mô-đun số phức w = 6z − 25i √ Cho số phức z thỏa mãn A 29 B C 13 D Câu 22 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B C Khơng có số D Chỉ có số Câu 23 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ C |z1 + z2 | = D |z1 + z2 | = 13 A |z1 + z2 | = B |z1 + z2 | = Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C −21008 D 21008 Câu 25 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C D −7 R1 R R1 R1 Câu 26 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −3 C −8 D 12 R1 Câu 27 Tích phân e−x dx e−1 1 A B − C e − D e e e Trang 2/5 Mã đề 001 R8 R4 R4 Câu 28 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R8 A f (x) = B f (x) = −5 R4 R4 C [4 f (x) − 2g(x)] = −2 D [ f (x) + g(x)] = 10 Câu 29 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; 1; 4) B (−3; −1; −4) C (−3; −1; 4) D (3; −1; −4) Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; −4; 4) C C(−1; 0; −2) D C(1; 0; 2) Câu 31 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = 2023cos(2023x) A f (x) = − 2023 C f (x) = cos(2023x) D f (x) = −2023cos(2023x) Câu 32 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B y − = C x − = D z − = −−→ Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 3; −1) C (3; 1; 1) D (1; 1; 3) Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = C P = 2016 D max T = √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 37 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 √ Câu 38 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B < |z| < C |z| < D |z| > 2 2 Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = C T = 13 D T = 13 3 + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm R Câu 42 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| A D điểm Q z số thực Giá trị lớn + z2 √ C 2 B D √ Câu 43 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ A B C D 2 Câu 44 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 250π 400π 500π A B C D 9 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (−3; 0) Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B ln + 6π C D (1; 5) cos x π F(− ) = π Khi giá trị sin x + cos x 3π ln + √ 2x − x2 + Câu 50 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D 6π D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001