LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A − 1 3 sin 3x +C B 1 3 sin 3x +C C −3 sin 3x +C D 3 s[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C 3 C −3 sin 3x + C D sin 3x + C √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C a A D 2 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m ) C 3(m2 ) D (m2 ) √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A B C π D π Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + 2x2 + C y = x4 + √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 A (0; ) B (1; +∞) C (0; 1) x−1 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y + 2z = C (P) : x − y − 2z = D y = −x4 + 2x2 + D ( ; +∞) y+2 z = = Viết phương −1 D (P) : x + y + 2z = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 0; 3) x−1 y+2 z Câu Đường thẳng (∆) : = = không qua điểm đây? −1 A (1; −2; 0) B (−1; −3; 1) C (3; −1; −1) D A(−1; 2; 0) Câu 10 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) A → B → C → D → Câu 11 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 512 B 128 C D 64 Câu 12 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 6πa2 B 5πa2 C 2πa2 D 4πa2 Câu 13 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = − + C B cos 3xdx = sin 3x + C R R sin 3x C cos 3xdx = + C D cos 3xdx = sin 3x + C Câu 14 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Trang 1/5 Mã đề 001 −a = (4; −6; 2) Phương Câu 15 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t C x = + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t π R4 Câu 16 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − π2 + 15π π2 + 16π − 16 π2 − B C D A 16 16 16 16 Câu 17 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (−1; 2) C (0; 1) D (1; 0) Câu 18 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 30 C 225 D 210 Câu 19 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (2; 4; 6) C (−2; −4; −6) D (1; 2; 3) R4 R4 R4 Câu 20 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D = y−1 = Câu 21 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) B C 11 D A 31 z−1 −3 Gọi (P) mặt Câu 22 Cho cấp số nhân (un ) với u1 = công bội q = 21 Giá trị u3 A 12 B C 14 D 72 Câu 23 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 32 B C 43 D Câu 24 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2 B 14 A 11 + √ C 18 + D 28 Câu 25 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Câu 26 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 + C A f (x) = −sinx + x2 + C B f (x) = sinx + R R x2 + C C f (x) = sinx + x2 + C D f (x) = −sinx + 2x + Câu 27 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = − B y = C y = − D y = 3 3 R4 R4 R4 Câu 28 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A −1 B C D Câu 29 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Trang 2/5 Mã đề 001 Câu 30 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 31 Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 32 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + t x = + 2t x = + 2t y = + 3t y = + 2t y = −1 + t y = −1 + 3t A B C D z = −1 + t z = + 3t z = −1 + 3t z = −1 + t Câu 33 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 √ Câu 35 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 10 D |z| = 33 A |z| = −2 − 3i Câu 36 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ C max |z| = D max |z| = A max |z| = B max |z| = Câu 37 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x + y − = D x − y + = z+i+1 số ảo? Câu 38 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một Parabol B Một Elip C Một đường thẳng D Một đường trịn √ Câu 39 (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| > C |z| < D < |z| < 2 2 Câu 40 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 2π D 4π √ Câu 41 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 42 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 Trang 3/5 Mã đề 001 Câu 44 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 3mn + n + n B log2 2250 = 2mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 2mn + 2n + m Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 46 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = D P = 2loga e Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 33π C 6π D 32π √ 2x − x2 + Câu 48 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Hàm số hàm số sau đồng biến R A y = 4x + x+2 C y = −x3 − x2 − 5x B y = x4 + 3x2 D y = x3 + 3x2 + 6x − Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001