Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > e2 C m > D m > 2e Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C D A −6 B Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m < C m ≥ D m ≤ Câu √Cho hai√ số thực a, bthỏa mãn a > b > Kết luận√ sau sai? √ √5 √ − a b 2 − e C a > b D a < b A a Câu Tính I = R1 √3 7x + 1dx A I = 21 B I = 60 28 C I = 45 28 D I = 20 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 C y = − D y = A y = −1 B y = R R R R 2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 29 D R = 21 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 5; 0) C (0; −5; 0) D (0; 1; 0) Câu Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C D −2 Câu 10 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A A310 B C10 C 103 D 310 − → Câu 11 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 45 B 30 C 90◦ D 60◦ Câu 12 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 √ √ a Câu 13 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 90o B 45o C 30o D 60o Trang 1/5 Mã đề 001 Câu 14 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 B 2a3 C 6a3 D A 3 − Câu 15 Đạo hàm hàm số y = (2x + 1) tập xác định − − A − (2x + 1) B (2x + 1) ln(2x + 1) − − C − (2x + 1) D 2(2x + 1) ln(2x + 1) Câu 16 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 B C D A 2 2(1 + 2i) Câu 17 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu 19 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 20 Những số sau vừa số thực vừa số ảo? A B C.Truehỉ có số C Chỉ có số D Khơng có số 1 25 = + Câu 21 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B −17 C 17 D 31 Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là−3 phần ảo −2i C Phần thực là3 phần ảo D Phần thực phần ảo 2i + 2i + i2017 Câu 23 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −22016 C −21008 D −21008 + Câu 25 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 130 B 30 C 10 D 10 R1 R R1 R1 Câu 26 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −3 B C −8 D 12 R3 Câu 27 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (0; ) B (−1; 0) C ( ; 1) D (1; 2) 2 Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x − 1) x + C B (x + 1) x + C C x2 + x+1 x+1 + C D x2 x + C Trang 2/5 Mã đề 001 R2 Câu 29 Tính tích phân I = xe x dx A I = e2 B I = e C I = 3e2 − 2e D I = −e2 Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) b Rb B a f (2x + 3) = F(2x + 3) a Rb C a k · f (x) = k[F(b) − F(a)] Ra D b f (x) = F(b) − F(a) Câu 31 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x + B F(x) = e x+1 C F(x) = e2x D F(x) = e x Câu 32 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B 2x + y − z − = C −2x + y − z + = D −2x + y − z + = −−→ Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (3; 1; 1) C (3; 3; −1) D (−1; −1; −3) z+1 số ảo Tìm |z| ? Câu 34 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = √ 2 Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a2 + b2 + c2 − ab − bc − ca C D a + b + c Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = D A = −1 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B C D 10 A 15 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B ≤ |z| ≤ C < |z| < D |z| > 2 2 z Câu 42 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ A B C D Trang 3/5 Mã đề 001 x2 + mx + Câu 43 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C m = Câu 44 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A B 32 C D Khơng có m x2 )=8 64 D 128 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 A M( ; ; ) 3 21 B M( ; ; ) 3 11 17 C M( ; ; ) 3 10 31 D M( ; ; ) 3 Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRl + 2πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − A y′ = x (x2 − 1)log4 e B y′ = Câu 49 Biết a, b ∈ Z cho A R x 2(x2 − 1) ln (x + 1)e2x dx = ( B C y′ = x (x2 − 1) ln C F(0) bằng: 6π ln + 5 B 3π ln + x2 − ln ax + b 2x )e + C Khi giá trị a + b là: Câu 50 Biết hàm F(x) nguyên hàm hàm f (x) = A D y′ = √ C ln + D cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001