Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Bất đẳng thức nào sau đây là đúng? A 3π < 2π B 3−e > 2−e C ( √ 3 + 1) π[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Bất đẳng thức sau đúng? π −e A 3√ < 2π B 3√ > 2−e √ √ π e e π C ( + 1) > ( + 1) D ( − 1) < ( − 1) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H1) D (H3) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C 4πR3 D πR3 A πR3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến R Câu R5 Công thức sai? A R sin x = − cos x + C C a x = a x ln a + C R B R cos x = sin x + C D e x = e x + C x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = −1 D y = R R R R 2 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 5a 2a A √ B C D √ 5 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(6; 21; 21) C C(8; ; 19) D C(20; 15; 7) Câu Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 76 C 64 D 56 Câu 10 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a2 B a3 C 6a3 D 2a3 Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ) √ Câu 12 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 1; 3, 3)· C (3, 7; 3, 9)· D (3, 3; 3, 5)· Trang 1/5 Mã đề 001 Câu 13 Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − 2 1+x −2x + A y = B y = C y = D y = x+2 x+1 − 2x x−2 Câu 14 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B −2 C D Câu 15 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (1; −4) C (0; −3) D (−1; −4) − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 30 C 45◦ D 60◦ Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = +√2i, z2 = − i Giá trị √ B 130 C 30 D 10 A 10 + 2i + i2017 Câu 19 Số phức z = có tổng phần thực phần ảo 2−i A B -1 C D − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 29 11 29 11 B C D − A − 13 13 13 13 (1 + i)(2 + i) (1 − i)(2 − i) Câu 21 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B z = C z số ảo D |z| = z Câu 22 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 C z + z = 2bi D z · z = a2 − b2 B z − z = 2a Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 25 1 Câu 24 Cho số phức z thỏa Khi phần ảo z bao nhiêu? = + z + i (2 − i)2 A 31 B −31 C −17 D 17 Câu 25 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (3; 1; 4) C (3; −1; −4) D (−3; −1; −4) Câu 27 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e2x B F(x) = e x + C F(x) = e x D F(x) = e x+1 Trang 2/5 Mã đề 001 Câu 28 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x)dx = 2x + + C B f (x)dx = 2x + + C R R √ + C C f (x) = 2x + + C D f (x)dx = √ 2x + Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A z − = B x + y + z − = C x − = D y − = R4 R4 R3 Câu 30 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 31 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? b A a k · f (x) = k[F(b) − F(a)] B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Ra D b f (x) = F(b) − F(a) Câu R32 Mệnh đề sau sai? A R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R B R ( f (x) + g(x)) = R f (x) + R g(x), với hàm số f (x); g(x) liên tục R C R ( f (x) − g(x)) R = f (x) − g(x), với hàm số f (x); g(x) liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R Câu 33 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 + x+1 x+1 + C B x2 x + C Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| < B |A| > C (x + 1) x + C D (x − 1) x + C 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| ≤ = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 1 A ; B 0; C ; D ; +∞ 4 4 Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C Phần thực z số âm D |z| = √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B < |z| < C |z| > D |z| < 2 2 Câu 38 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Trang 3/5 Mã đề 001 Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = C P = + D P = 34 + A P = 26 √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? √ √ √ √ 10 B Pmax = C Pmax = D Pmax = A Pmax = 3 z Câu 42 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vuông góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + πR2 D S = πRl + 2πR2 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 C (x − 1) + (y + 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = 3x cắt đường thẳng y = x + m Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C Không tồn m D m = −2 √ 2x − x2 + Câu 48 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 r 3x + Câu 50 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−∞; 0) C D = (−1; 4) D D = (1; +∞) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001