1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (521)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,98 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(6; −17; 21) D C(20; 15; 7) A C(6; 21; 21) B C(8; ; 19) ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B ac < C ab < D bc > √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H4) C (H2) D (H3) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = − A y = ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = (−∞; 2) D S = [ 0; +∞) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 29 C R = 21 D R = Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường parabol C Đường tròn D Đường hypebol x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 Câu Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, diện √ tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 12 D 18 Câu 10 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2019 C 2021 D 2020 Câu 11 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A P(4 ; −1 ; 3) B N(1 ; ; 7) C Q(4 ; ; 2) D M(0 ; ; 2) Câu 12 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C D −1 Trang 1/5 Mã đề 001 1 Câu 13 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 Có giá trị nguyên D Câu 14 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 384 B −384 C −192 D 192 Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; 2; 3) −n = (1; −2; −1) A → B → C → D → Câu 16 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 − sin x + C B 5x5 − sin x + C C 5x5 + sin x + C !2016 !2018 1+i 1−i Câu 17 Số phức z = + 1−i 1+i A + i B C −2 Câu 18 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = − 3i D x5 + sin x + C D D w = −7 − 7i Câu 19 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ √ 34 34 B |z| = C |z| = 34 A |z| = D |z| = 34 3 + 2i + i2017 Câu 20 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D − 2i (1 − i)(2 + i) Câu 21 Phần thực số phức z = + 2−i + 3i 11 29 11 29 A − B − C D 13 13 13 13 Câu 22 √ Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i A B 29 C 13 D Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 24 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 √ Câu 25 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D m ≥ m ≤ R2 Câu 26 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2025 B −2024 C D 2024 R4 R4 R3 Câu 27 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 28 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = R1 R R1 R1 Câu 29 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B C −8 D −3 Trang 2/5 Mã đề 001 Câu 30 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x + 2y + z − = B 3x − 2y + z − = C 3x − 2y + z + = D 3x − 2y + z − 12 = Câu 31 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 2 A F(x) = − (2 − e x ) B F(x) = e x + C F(x) = (e x + 5) D F(x) = − e x + C 2 2 R3 Câu 32 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B ( ; 1) C (1; 2) D (0; ) 2 R + lnx Câu 33 Nguyên hàm dx(x > 0) x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = C T = 13 D T = 13 3 + z + z2 Câu 36 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 B C D A z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B 2 C D 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C D A √ B 2 Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C 10 D Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 B ; +∞ C ; D ; A 0; 4 4 Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln d Câu 45 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ D R = 14 A R = B R = C R = 15 3x cắt đường thẳng y = x + m Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C Không tồn m D m = −2 Câu 48 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = x4 + 3x2 C y = −x3 − x2 − 5x D y = 4x + x+2 Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a a 15 3a A B C D 10 2 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 6π B 32π C 31π D 33π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 07:47