Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C 6πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (0; 6; 0) D (−2; 0; 0) Câu R3 Kết đúng? R A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x sin3 x 2 + C D sin x cos x = + C C sin x cos x = − 3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 100a3 D 60a3 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(20; 15; 7) C C(6; 21; 21) D C(6; −17; 21) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 5a 3a A √ B C D √ 5 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −2 D m = −15 Câu Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 10 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 11 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 18 D 20 Câu 12 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C D −1 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −2 C −8 D −4 6 R R R Câu 14 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −6 B C D −2 Câu 15 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 16 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2019 B 2020 C 2021 Câu 17 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −3 − 3i C w = −7 − 7i D 2022 D w = + 7i Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? C z − z = 2a D z · z = a2 − b2 A |z2 | = |z|2 B z + z = 2bi Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 2017 (1 + i) Câu 20 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C D 21008 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 21 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D 25 1 Câu 22 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 31 C 17 D −17 Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = 2i C P = + i D P = Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 Câu 25 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 26 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = − cos(2023x) B f (x) = cos(2023x) 2023 C f (x) = 2023cos(2023x) D f (x) = −2023cos(2023x) Câu 27 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x + y + z − = C x − = D z − = Trang 2/5 Mã đề 001 Câu 28 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = −cos2 x B F(x) = −cos2x C F(x) = sin2 x Câu 29 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x − 1) x + C B (x + 1) x + C C x2 + x+1 + C D F(x) = − cos2x D x2 x + C x+1 R + lnx dx(x > 0) Câu 30 Nguyên hàm x 1 A ln2 x + lnx + C B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C 2 Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vuông góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x − 2y + z − 12 = C 3x + 2y + z − = D 3x − 2y + z + = Câu 32 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = Câu 33 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 D F(x) = (e x + 5) A F(x) = − (2 − e x ) B F(x) = − e x + C C F(x) = e x + 2 2 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 34 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = −1 C A = D A = Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ C D A B 13 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 A ; +∞ B 0; C ; D ; 4 4 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 Câu 40 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B P = −2016 C max T = D P = √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| < B < |z| < C |z| > D ≤ |z| ≤ 2 2 Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B 15 C 10 D Trang 3/5 Mã đề 001 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A Câu 44 Biết B −2 π R2 C D −4 C ln D sin 2xdx = ea Khi giá trị a là: A − ln B Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 33π C 32π D 6π Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 30 3a B C D A 2 10 Câu 47 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 2mn + n + n C log2 2250 = 2mn + 2n + m D log2 2250 = 3mn + n + n Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 50 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = ln a D P = + 2(ln a)2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001