Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x2 B y = x4 + 3x2 + 2 C y = x[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = x4 + 3x2 + D y = cos x Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B 4πR3 C πR3 A πR3 3 D πR3 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếu < x < y < −3 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0) Câu Kết đúng? R sin3 x + C A sin2 x cos x = R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C sin3 x + C Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3a b B VS ABC = A VS ABC = 12 12 √ √ 3ab2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường hypebol D Đường tròn − Câu Đạo hàm hàm số y = (2x + 1) tập xác định − − A 2(2x + 1) ln(2x + 1) B − (2x + 1) − − C (2x + 1) ln(2x + 1) D − (2x + 1) Câu 10 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −6 C −4 D −8 D R sin2 x cos x = − Câu 11 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 220 14 55 Trang 1/5 Mã đề 001 Câu 12 Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 1+x 2x − 2 B y = C y = D y = A y = x+1 x−2 − 2x x+2 Câu 13 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 90 C 45◦ D 30◦ Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) cắt mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 16 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 C S = πa2 D S = πa2 A S = πa2 4 Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B 21008 C −21008 + D −22016 Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực phần ảo 2i C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu 19 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = + i C P = D P = Câu 20 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = −7 − 7i C w = + 7i D w = − 3i 1 25 = + Câu 21 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B −31 C 17 D 31 (1 + i)(2 + i) (1 − i)(2 − i) Câu 22 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = C z = z D z số ảo z Câu 23 √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ A 10 B 10 C 130 D 30 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B 11 + 2i C −3 − 2i D −3 − 10i Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = − e x + C B F(x) = e x + C F(x) = (e x + 5) D F(x) = − (2 − e x ) 2 2 Trang 2/5 Mã đề 001 Câu 27 Tích phân I = A R2 (2x − 1) có giá trị bằng: B C D Câu 28 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A N(4; 2; 1) B M(−2; 1; −8) C P(3; 1; 3) D Q(1; 2; −5) Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Ra B b f (x) = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Rb D a k · f (x) = k[F(b) − F(a)] Câu 30 Nguyên hàm A ln2 x + lnx + C R + lnx dx(x > 0) x B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C −−→ Câu 31 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 1; 1) C (1; 1; 3) D (3; 3; −1) Câu 32 Hàm số f (x) thoả mãn f ′ (x) = x x là: x+1 + C D (x − 1) x + C x+1 Câu 33 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = A (x + 1) x + C B x2 x + C Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≤ B |A| > C x2 + 2z − i Mệnh đề sau đúng? + iz C |A| < D |A| ≥ z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = Câu 35 Cho số phức z , thỏa mãn A |z| = D |z| = Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A ; B ; +∞ C ; D 0; 4 4 Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i = Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C √ D 2 Trang 3/5 Mã đề 001 + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 √ 2 Mệnh đề Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = z Câu 42 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 C D A B −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 a3 15 a3 15 a3 15 A B C D 16 Câu 45 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C D D Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C 6π D 5 Câu 48 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A 2 r 3x + Câu 49 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−∞; −1] ∪ (1; +∞) C D = (−1; 4) D D = (1; +∞) Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001