Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; −1; 2) Câu Kết đúng? R sin3 x + C A sin2 x cos x = R C sin2 x cos x = cos2 x sin x + C sin3 x + C R D sin2 x cos x = −cos2 x sin x + C p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếux = y = −3 B R sin2 x cos x = − ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B ab < C ac < D bc > Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Cho hàm số y = Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường elip C Đường hypebol D Đường parabol , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π C D 3π A √ 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 2 3a b a 3b2 − a2 A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, diện √ tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 12 D 21 Câu 10 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 + 12i B w = −8 − 12i C w = + 12i D w = −8 − 12i √ Câu 11 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 7; 3, 9)· D (3, 1; 3, 3)· Trang 1/5 Mã đề 001 Câu 12 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 13 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B H(−2; −1; 3) C K(3; 0; 15) D I(−1; −2; 3) Câu 14 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2021 C 2019 D 2020 Câu 15 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B C −7 D − Câu 16 Đạo hàm hàm số y = (2x + 1) tập xác định − − B − (2x + 1) A 2(2x + 1) ln(2x + 1) − − C (2x + 1) ln(2x + 1) D − (2x + 1) !2016 !2018 1−i 1+i + Câu 17 Số phức z = 1−i 1+i A + i B −2 C D z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ C 11 D A 13 B Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C 21008 D −21008 Câu 20 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i A B C 29 D 13 (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i A B C D 21008 − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A − B C D − 13 13 13 13 Câu 23 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z · z = a2 − b2 C z + z = 2bi D |z2 | = |z|2 Câu 21 Số phức z = Câu 24 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = + i C z = − i R1 R R1 R1 Câu 26 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B 12 C D z = −3 + i D −3 Trang 2/5 Mã đề 001 Câu 27 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e x C F(x) = e2x D F(x) = e x + R Câu 28 Tìm nguyên hàm I = xcosxdx x B I = xsinx − cosx + C A I = x2 cos + C x C I = x2 sin + C D I = xsinx + cosx + C Câu 29 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = 10 B I = C I = D I = Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 31 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B x − = C y − = D z − = Câu 32 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F(x) = f ′ (x) Câu 33 Tìm nguyên hàm hàm số f (x) = √ f (x)dx = √ + C 2x + R 1√ 2x + + C C f (x)dx = A R 2x + R √ B f (x)dx = 2x + + C D R f (x) = √ 2x + + C Câu 34 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B C 10 D 15 Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B |z| = C z số thực không dương D z số ảo √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q Câu 37 Cho số phức z thỏa mãn z + √ A B bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm M = Tổng giá trị lớn nhỏ |z| z √ C D 13 Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = 2016 C P = D P = Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ √ A 2 B z số thực Giá trị lớn + z2 C D Câu 41 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A P = −2016 B P = C P = 2016 D max T = Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080255 đồng B 36080251 đồng D 36080253 đồng Câu 44 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 6a3 C 12a3 D 4a3 Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 46 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = + 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 − 3t y = −2 + 3t y = + 3t B C D A z = + 5t z = − 5t z = − 5t z = −4 − 5t Câu 48 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−1; 1) C (−3; 0) Câu 50 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π ln + 5 C D (3; 5) cos x π F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001