1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (669)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,72 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y = log5x tại điểm có hoành độ[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = −1+ A y = ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln R1 √3 Câu Tính I = 7x + 1dx 20 A I = B I = 45 28 C I = 21 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D I = 60 28 D πR3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m < D m ≥ 1 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H3) D (H1) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(6; 21; 21) A C(6; −17; 21) B C(20; 15; 7) C C(8; ; 19) √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA = trụ cho là: √ √ 3a Thể tích khối lăng 3 A a B 3a C 3a D 3a Câu Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 76 C 56 D 64 Câu 10 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 11 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (1; 4) Trang 1/5 Mã đề 001 Câu 12 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B C −2 D −1 Câu 13 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 13 C 17 D 20 Câu 14 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 103 B A310 C 310 D C10 Câu 15 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 16 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; −1) −n = (1; −2; 3) −n = (1; 3; −2) A → B → C → D → (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C D −7 2017 + 2i + i có tổng phần thực phần ảo Câu 19 Số phức z = 2−i A B C D -1 !2016 !2018 1+i 1−i Câu 20 Số phức z = + 1−i 1+i A + i B −2 C D z Câu 21 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z √ √ A B C 13 D 11 Câu 22 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z · z = a2 − b2 C z + z = 2bi D z − z = 2a Câu 23.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 10 C 30 D 130 Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −21008 D −22016 (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B z = C z số ảo D |z| = z Câu 26 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e x C F(x) = e2x D F(x) = e x + Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F ′ (x) + C = f (x) C F(x) = f ′ (x) D F(x) = f ′ (x) + C Câu R28 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R B k f (x) = k f (x) với số k với hàm số f (x) liên tục R Trang 2/5 Mã đề 001 R C R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Câu 29 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B (x − 1) x + C C x2 x + C D x2 + x+1 x+1 + C R + lnx Câu 30 Nguyên hàm dx(x > 0) x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 Câu 31 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A N(4; 2; 1) B P(3; 1; 3) C M(−2; 1; −8) D Q(1; 2; −5) R2 Câu 32 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 33 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A z − = B x − = C y − = D x + y + z − = Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? C A B 2 D Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √  √  √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 z+1 Câu 40 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = 13 B T = C T = D T = 13 3 Trang 3/5 Mã đề 001 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A C D B √ 2 Câu 43 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + πR2 C S = πRh + πR2 D S = πRl + 2πR2 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + m 2mn + n + C log2 2250 = n A log2 2250 = 3mn + n + n 2mn + n + D log2 2250 = n B log2 2250 = Câu 48 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ A B C D 2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 27 29 A B C D 4 4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 07:25