1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi minh họa thpt môn toán (839)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề ĐỀ THI MINH HỌA THPT MÔN TOÁN
Chuyên ngành Toán
Thể loại Đề thi minh họa
Năm xuất bản 2022 – 2023
Định dạng
Số trang 4
Dung lượng 125,67 KB

Nội dung

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa đ[.]

Trang 1

Đề minh họa L A TEX ĐỀ THI MINH HỌA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 2 Có bao nhiêu số nguyên x thỏa mãn log3 x2343−16 < log7 x 2 −16

27 ?

Câu 3 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2 bằng

Câu 4 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

√ 3

Câu 5 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= ln 3

x B y′ = − 1

x ln 3 C y′ = 1

x D y′ = 1

x ln 3

Câu 6 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1

2 = z−1

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

Câu 7 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 8 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 9 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương

án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

A I(−1; −2; 3) B K(3; 0; 15) C H(−2; −1; 3) D J(−3; 2; 7).

Câu 11 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

3

2

3√10.

Câu 12 Cho hàm số y= f (x) có đồ thị của y = f′

(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Trang 2

Câu 13 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2và trục hoành quanh trục Ox

A V = 22π

2 .

Câu 14 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng

Câu 15 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 16 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e

2

R

1

f(ln x)

Câu 17 Đường thẳng∆ có vectơ chỉ phương là −→u∆(12; −13) Vectơ nào sau đây là vectơ pháp tuyến của

∆?

A.−→n∆(13; 12) B. −→n∆(−13; 12) C.−→n∆(−12; −13) D.−→n∆(12; 13)

Câu 18 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ của vectơ−OA→là:

Câu 19 Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 10 học sinh?

10

Câu 20 Hệ số của x2 trong khai triển của (2x − 3)4là:

Câu 21 Phương trình tổng quát của đường thẳng∆ đi qua điểm M(x0; y0) và có vectơ pháp tuyến ⃗n(a; b) là:

A b(x − x0) − a(y − y0)= 0 B a(x+ x0)+ b(y + y0)= 0

C. x − x0

a = y − y0

Câu 22 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ của vectơ 2−AB −→ 4−BC→ là:

Câu 23 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ của vectơ 2−AB −→ 4−BC→ là:

Câu 24 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(2; −2), C(3; 1) Toạ độ của vectơ−AB→+−BC→ là:

Câu 25 Từ Hà Nội bay vào Đà Nẵng có các chuyến bay trực tiếp của ba hãng máy bay Hãng thứ nhất

cung cấp 4 chuyến bay mỗi ngày Hãng thứ hai cung cấp 3 chuyến bay mỗi ngày Hãng thứ ba cung cấp

1 chuyến bay mỗi ngày Hỏi mỗi ngày có bao nhiêu cách bay trực tiếp từ Hà Nội vào Đà Nẵng?

Câu 26 Kết quả nào đúng?

A.R sin2xcos x= sin3x

C.R sin2xcos x= −sin3x

Trang 3

Câu 27 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc tơ pháp tuyến của (P) là

A (−2; −1; 2) B (−2; 1; 2) C (2; −1; 2) D (2; −1; −2).

Câu 28 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 29 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 1 B |→−u |= 3

C |→−u |= √3 D |→−u |= 9

Câu 30 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A ab < 0 B bc > 0 C ad > 0 D ac < 0.

Câu 31 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (0; 2; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 6; 0).

Câu 32 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 33 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường elip B Đường tròn C Đường parabol D Đường hypebol.

Câu 34 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 6

√ 2

√ 5

5 .

Câu 35 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1 z2

+

z2 z1

A. √1

√ 2

Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. C |z| <

1

2. D |z| > 2.

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P= (|z| − 2)2 C P =

|z|2− 42 D P = (|z| − 4)2

Câu 38 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

Câu 39 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

A. 3

1

Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

2;

9 4

!

4

!

4;

5 4

!

Trang 4

Câu 41 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A 3 < |z| < 5 B. 5

2 < |z| < 4 C. 1

2 < |z| < 2 D. 3

2 < |z| < 3

Câu 42 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 43 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A 3x − 4y+ 6z + 34 = 0 B x − 2y − 2z − 4= 0

C −x+ 2y + 2z + 4 = 0 D x+ 2y + 2z + 8 = 0

Câu 45 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3 R

1 [1+ f (x)]dx bằng

32

3 .

Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(3

4;

1

3

4;

1

3

4;

1

3

4;

3

2; −1).

Câu 47 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A A(−1; 2; 0) B (1; −2; 0) C (3; −1; −1) D (−1; −3; 1).

Câu 48 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

√ 3

1

√ 15

5 .

Câu 49 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2z + 5 = 0 B (P) : y − z + 2 = 0 C (P) : y + z − 1 = 0 D (P) : x − 2y + 1 = 0.

Câu 50 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −

z

i= 0 Tính S = 2a + 3b

HẾT

Ngày đăng: 07/04/2023, 11:07

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN