4.a Transmittance spectra of the quartz glass curve 1, AZO thin film curve 2, ZnO thin film curve 3, ZnO NW arrays grown on the ZnO seed layer at 80 ◦ C for 1 h ◦... 6.TEM images of the Zn
Trang 1Applied Surface Science 257 (2011) 10134– 10140
j o ur na l ho me p age :w w w e l s e v i e r c o m / l o c a t e / a p s u s c
substrate
Jin Zhanga, Wenxiu Quea,∗, Qiaoying Jiaa, Xiangdong Yeb, Yucheng Dingb
a Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
b State Key Laboratory of Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
Article history:
Received 11 December 2010
Received in revised form 7 June 2011
Accepted 10 June 2011
Available online 7 July 2011
Keywords:
Zinc oxide
Nanowires
Seed layer
Fluorination
Photoluminescence
© 2011 Elsevier B.V All rights reserved
1 Introduction
ZnOisasemiconductorwithexceptionalelectronicand
pho-tonicpropertiesaswellasgreatthermalstability andoxidation
resistance.RecentdevelopmentsandcapacitytosynthesizeZnO
nanostructures with different shapes [1–3] have led to novel
andenhancedpropertiesascomparedtoitsbulkform,andthus
enablingittohavemanyattractiveapplications.Forexample,it
canbeusedasapotentialmaterialfornanodeviceassemblyand
applicationsinblue-UVlightemitters[4]andphotodetectors[5],
fieldemissiondevices[6],anddye-sensitizedsolarcells [7],etc
Indeed,well-alignedZnOnanowire(NW)arrayshavebeenformed
onGaN,AlN,Al1−xGaxN,6H–SiC,andZnObufferlayers[8–10],but
theopticalpropertiesoftheNWsgrownonbufferlayershavebeen
scarcelyinvestigated,especiallywithrespecttoimpurityanddefect
distribution,whichcanhindertheapplicationsoftheNWarrays
Inrecentyears,anumberoftheZnOthinfilmsdopedwithvarious
metallicionshavebeenextensivelystudiedforthemanipulation
oftheiropticalandelectricalproperties,theAl-dopedZnO(AZO)
thinfilmsareattractiveduetotheirgoodconductivity,high
trans-∗ Corresponding author Tel.: +86 29 82668679; fax: +86 29 82668794.
E-mail address: wxque@mail.xjtu.edu.cn (W Que).
parencyand relativelylowcost[11,12].Inviewofthis,theuse
ofalattice-matchedandconductingbufferlayermaycircumvent theproblemandleadtopotentialintegrationwithsilicon micro-electronics[13–15].Therefore,theluminescentandelectronfield emissionpropertiesoftheZnONWarraysgrownontheAZOseed layersarealsoreportedbymanyresearchgroups[16,17] Further-more,inordertoachieveanimmensepotentialoftheZnO NW arrays,itisimportantandnecessarytohaveagoodcontrolforthe spatialarrangementsandpropertiesoftheZnONWarrays[16]
In this paper,the ZnO NWarrays weregrown onAZO seed layer,whichwasdepositedbyasol–gelprocess,bya hydrother-malmethod,andeffectsofthetemperatureandgrowthtimeof thehydrothermalprocessonthemorphologicaland photolumines-cencepropertiesoftheas-grownZnONWarrayswerealsostudied anddiscussed.Inaddition,whatwebelievetobethefirstreport
onthefabricationofthepatternedAZOseedlayeronthesilicon substratebycombiningasol–gelprocesswithanelectron-beam lithographyprocess,aswellasasurface fluorinationtechnique, whichcaneliminatetheeffectoftheelectron-beamresistonthe boundaryofthepatternedAZOseedlayer,andthustheZnONW arrayscouldbesuccessfullygrownonthepatternedregionsofthe AZOseedlayerbyemployingthehydrothermalprocess Further-more,thephotoluminescenepropertiesoftheselectively grown ZnONWarrayswerealsocharacterizedandinvestigated
0169-4332/$ – see front matter © 2011 Elsevier B.V All rights reserved.
Trang 2Fig 1. Schematic representation of the patterning process of the ZnO NW arrays on silicon substrate.
2 Experimental
2.1 PreparationoftheAZOseedlayer
InordertocomparethepropertiesoftheZnONWarraysgrown
ondifferentseedlayers,theZnOandAZOseedlayerswere
pre-paredbythesol–geltechnique.Here,theAl-dopedconcentration
oftheAZOseedlayerwas1.0at.%withrespecttoZndue toits
relativelyoutstandingperformancethanotherdoping
concentra-tionsas shown in our previousreport [18] The ZnO and AZO
solswerepreparedasfollows.Inbriefly,Zn(CH3COO)2·2H2Owas
firstdissolvedina2-methoxyethanolmonoethanolamine
(MEA)-deionizedwater solutionat roomtemperature.Themolarratio
oftheMEA anddeionized watertozinc acetate wasfixedat1
and 0.5,respectively, and theconcentrationof thezinc acetate
was0.75mol/L.For theAZOsol, anappropriateamountof
alu-minumdopingwasobtainedbyaddingAlCl3·6H2Otoabovethe
as-preparedprecursorsolution.Then,thefinalsolutionwasstirred
at60◦Cfor30minuntiltoyieldaclearandhomogeneoussolution
TheZnOandAZOseedlayersweredepositedontoaquartzglass
substratebyamulti-spin-coatingprocessfor20sat3000rpm.It
shouldbementionedthatafterspin-coatingonelayer,thecoated
sampleshouldbepreheatedintheair at200◦Cfor 10minand
thustheone-layerthinfilmwithabout50nmthickcanbe
eas-ilyobtained.Finally,thesamplewiththreelayerswaspost-heated
atatemperatureof500◦Cfor1hintheair[19]
2.2 HydrothermalsynthesisoftheZnONWsontheZnOandAZO
seedlayers
VerticallyalignedZnONWarraysweregrowninaTeflon-lined
stainlesssteel autoclavebyimmersingthesubstratesdeposited
withtheZnOor AZOseedlayers intothemixedaqueous
solu-tion,whichincludesZn(NO ) (0.04mol/L)andNaOH(0.8mol/L),
at80–180◦Cfor1–3h.Theobtainedsampleswerethenwashedby thedeionizedwateranddriedintheairat80◦C[20]
2.3 FabricationofthepatternedZnONWarraysonsilicon substrate
Fig.1showsthefabricationprocessofthepatternedZnONW arrays on the silicon substrate Here, the electron-beam resist (ZEP520AfromZeonCorp.)wasfirstspin-coatedonthesilicon sub-strateandfollowedthecoatedsamplewasputinanoventoprebake
at180◦Cfor30min.Then,theprebakedsamplewasexposedfor patterningat30kVunderahigh-resolutionelectron-beam lithog-raphysystem(CABL-9000CCrestecCorp.).Subsequently,thesilicon substratewiththepatternedresistwasimmergedandrinsedin
aZMD-B(Methylisobutylketone89%andIsopropylalcohol11%) solutionfor1mintoremovetheexposedEB-resist.Tomakelow surfaceenergycoatingsonthesubstrate,thesiliconsubstratewith patternedresistwasimmergedintothesolution,whichconsists
of2.0vol.%(Heptadecafluoro-1,1,2,2-tetradecyl)trimethoxysilane (SC-1060F,fromSicongNewMaterialsCorp.),0.5vol.%aceticacid and97.5vol.%isopropylalcohol,for2handthenpickedout Fol-lowedthattheimmergedsamplewasheatedat150◦Cinanoven for1handcooleddowntoroomtemperature,theresidualresist wasthenremovedfromthesilicon substratebyrinsingit with chlorobenzene,thus,thetemplatewasobtained.Finally,theAZO solwasspin-coatedonthepatternedsiliconsubstrateandtheZnO
NWarrayswereselectivelygrownonthepatternedregionsofthe AZOseedlayerbythehydrothermalprocess
The structural properties of the ZnO NW arrays were char-acterizedbyusingaD/max-2400X-raydiffractionspectrometer (Rigaku)withCuK␣radiationandoperatedat40kVand100mA from20to70◦in2,andthescanningspeedwas15◦min−1atastep
of0.02◦.ThemorphologicalpropertiesoftheZnONWarrayswere observedby aJEOL JSM-7000Ffield-emissionscanningelectron
Trang 310136 J Zhang et al / Applied Surface Science257 (2011) 10134– 10140
Fig 2. (a) SEM image of the ZnO seed layer, (b) SEM image of the AZO seed layer.
microscopy(FE-SEM).TheUV–visabsorptionspectraand
transmit-tancespectraoftheZnONWarrayfilmswerecharacterizedbya
JASCOV-570UV/VIS/NIRspectrometerandthephotoluminescence
spectraoftheZnONWarraysweremeasuredatroomtemperature
byaFLUOROMAX-4spectrometer
3 Results and discussion
SEMimagesandXRDpatternsofboththeZnOandAZOseed
layer,whicharedepositedonthequartzglasssubstrate,areshowed
inFigs.2and3,respectively.ItcanbeobservedfromFig.2that
theAZOseedlayerhasasmallergrainsizeascomparedtothat
oftheZnOseedlayer,andthe(002)diffractionpeakoftheAZO
seedlayerinintensityishigherthanthatoftheZnOseedlayer
asseeninFig.3.ItisindicatedthattheAZOseedlayerhasabetter
crystallineorientation(002)thanthatoftheZnOseedlayer,which
coincideswiththosereportedinourpreviouswork[18].Fig.4(a)
showsthetransmittancespectraoftheZnOandAZOseedlayers
aswellasthecorrespondingZnONWarraysgrownontheseseed
layers.ResultsindicatethatalltheZnOandAZOthinfilmsexhibita
transmittanceofhigherthan85%inthevisibleregion.However,it
isworthytonotethatthetransmittanceoftheAZOthinfilmlayer
isobviouslyhigher(90%)thanthatoftheZnOthinfilmlayer,which
isprobablyrelatedtotheoptimizedcrystallineorientationofthe
(002)andtheseedlayerwithsmallergrainsize.Furthermore,the
transmittanceoftheZnONWarrays,whicharegrownontheZnO
2 Theta / degree
ZnO AZO (002)
Fig 3. XRD patterns of the ZnO and AZO seed layers.
orAZOseedlayerat80◦Cfor1h,isstillabove40%inthevisible region.Inaddition,thetransmittanceoftheZnONWarraysgrown
ontheAZOseedlayerislowerthanthatgrownonZnOseedlayer owingtoitshighlightscatteringanddecreaselighttransmittance
[18].Fig.4(b)showstheabsorptionspectraoftheobtainedsamples
ItisfoundthattheabsorptionpeakoftheAZOthinfilmlayerhasa blueshiftascomparedtothatoftheZnOthinfilmlayerduetothe Burstein–Mosseffect[21,22]
30 40 50 60 70 80 90
100
Wavelength (nm)
1
2
3
4
5
0.0 0.1 0.2 0.3 0.4 0.5
0.6
ZnO AZO
Wavelength / nm
Fig 4.(a) Transmittance spectra of the quartz glass (curve 1), AZO thin film (curve 2), ZnO thin film (curve 3), ZnO NW arrays grown on the ZnO seed layer at 80 ◦ C for 1 h
◦
Trang 4Fig 5.SEM images of the ZnO NWs grown on the ZnO and AZO seed layers: (a), (b) and (c) are SEM images of the ZnO NWs grown on the ZnO seed layer at 80 ◦ C for 1 h,
2 h and 3 h, respectively, (d), (e) and (f) are SEM images of the ZnO NWs grown on the AZO seed layer at 80 ◦ C for 1 h, 2 h and 3 h, respectively, (g) and (h) are SEM images of the ZnO NWs grown on the ZnO seed layer for 1 h at 130 and 180◦C, respectively, (i) and (j) are SEM images of the ZnO NWs grown on the AZO seed layer for 1 h at 130 and
180◦C, respectively.
Fig.5showstheSEMimagesoftheZnONWarraysgrownon
theZnOandAZOseedlayerat80–180◦Cfor1–3h,respectively
TheinsetsasshowninFig.5arethecross-sectionoftheZnONWs
arrays.Fig.6shows thattheTEMimagesand theselectedarea
electrondiffraction(SAED)patternoftheZnONWswhichgrown
ontheAZOseedlayerat80◦Cfor1h.Fig.6(a)isatypical low-magnificationimageofthesynthesizedZnONW.Thediameterof thetipisslightlysmallerthanthebottom.Theatomicarrangements
Trang 510138 J Zhang et al / Applied Surface Science257 (2011) 10134– 10140
Fig 6.TEM images of the ZnO NWs grown on the AZO seed layer (a) low-magnification image, (b) high-magnification image, (c) corresponding selected area electron diffraction pattern (SAED).
oftheZnONWareseeninFig.6(b).ItclearlyshowstheZnO(002)
fringesperpendiculartothewireaxisareonaverageseparatedby
0.26nm,indicatingthecrystallineZnONWsgrowthalongtheZnO
(002)direction.Also,thediffractionpatternconfirmsthattheZnO
NWshaveasinglecrystallinegrowthalongZnO(002)asshown
inFig.6(c).Inaddition,thesimilarresultsarealsoobservedforthe
ZnONWsgrownontheZnOseedlayerat80◦Cfor1h.Thevalues
ofthelengthanddiameteroftheZnONWs,whichisobtainedfrom
Fig.5aresummarizedinFig.7.Correspondingtothedifferentseed
layers(ZnO,AZO),theZnONWsgrownontheZnOseedlayerare
labeledasZnO-NWZ,andtheZnONWsgrownontheAZOseed
layerarelabeledasZnO-NWA.ItcanbeseenfromFig.5thatallthe
ZnONWarraysobtainedunderdifferenthydrothermalconditions
areverticallyalignedontheseedlayers.Forthehydrothermal
tem-peratureat80◦Candthegrowthtimebetween1and3h,thelength
anddiameteroftheZnO-NWZandtheZnO-NWAincreasewitha
lengtheningofthegrowthtimeasshowninFig.7.However,itis
alsointerestingtonoteforthesamegrowthtimethatthelengthof
theZnO-NWAismuchlongerthatoftheZnO-NWZandthe
diam-eteroftheZnO-NWAismuchsmallerthanthatoftheZnO-NWZ
Theseresultsareprobablyrelatedtothecrystalgrainsizeofthe
seedlayer,thatistosay,thebiggerthecrystalgrainsizeis,the
shorterandwiderthegrownZnONWisasshowninFig.5(a)–(f)
Inotherwords,theaspectratiooftheZnO-NWAishigherthanthat
oftheZnO-NWZ.Moreover,thedistanceamongtheZnO-NWAis
biggerthanthatamongtheZnO-NWZ.Thatisbecausethedistance
amongtheZnONWsisalsodependentonthecrystalinterspaces
andthecrystalgrainsizeoftheseedlayer.AscanbeseeninFig.2,
thequantityofthecrystalgrainswithintheunitareaoftheAZO
seedlayerismorethanthatoftheZnOseedlayer,whichleadstoa largernumberoftheZnONWscanbegrownontheAZOseedlayer
asshowninFig.5.Furthermore,itisalsoobservedforthesame growthtime(1h)butdifferenthydrothermaltemperaturesthatthe lengthoftheZnO-NWZincreasesandthediameteroftheZnO-NWZ enlargeextremelywiththeincreaseofthehydrothermal tempera-tureascomparedtothatoftheZnO-NWA.Areasonableexplanation
isthatthesmallcrystalgrainoftheAZOseedlayerrestrictsthe cross-growthoftheZnONWs.ThelengthoftheZnO-NWAalso increaseswiththeraisingofthehydrothermaltemperaturefrom
80◦Cto130◦C,butwhenthehydrothermaltemperatureisfurther
upto180◦C,thelengthoftheZnO-NWAisshorterthanthatofthe ZnO-NWAgrownat130◦C.Apossibleexplanationisasfollows.As reportedinRefs.[23,24],thehydrothermalsynthesisoftheZnO NWsisadynamicbalanceprocessasfollows
[Zn(OH)n]n−2−→ZnO+H2O+[OH]−,(n=2,4) (1) ZnO+2[OH]−→[ZnO2]2−+H2O (2) Thus,the[Zn(OH)n]n−2−groupsdehydrateatthesurfaceofthe ZnO seedlayertoformtheZnO molecules,H2Omoleculesand [OH]−,andtheformed[OH]−dissolvestheZnOmoleculestoform [ZnO2]2− groupsatthesametime.Whilethesupersaturationof the[Zn(OH)n]n−2−groupsishighenough,thegrowthrateofthe ZnONWswillbemuchhigherthanthedissolutionrate.Whilethe hydrothermal temperatureincreasedto130◦C,the supersatura-tionandthemoleculeenergyofthe[Zn(OH)n]n−2−groupsachieve the best values, which leads to a fast growth rate of the ZnO NWs.Whilethehydrothermaltemperaturefurtherincreasesup
1 2
3
Length of the ZnO NWs / µm
80 100 120 140 160 180
0 50 100 150 200 250 300 350 1
2 3
Diameter of the ZnO NWs / nm
80 100 120 140 160 180
Fig 7. Effect of the hydrothermal growth time and temperature on the length and diameter of the ZnO NWs: (a) a relationship between the length of the ZnO NWs and the
Trang 6canbeseenthatwiththeincreasethehydrothermaltemperature,
thepositionofthepeaksoccurredred-shiftandtheintensityofthe
peaksdecreasesgradually.Itisprobablyrelatedtoanincreaseof
thecrystaldefectsintheZnONWarraysduetohighergrowth
tem-perature[25–27].WhentheZnONWsgrowat80◦C,asharpand
strongUVpeakat380nm,whichcanbeassignedtotheintrinsic
excitationofZnO,dominatesthePLspectraandnootherpeaksare
observedinthespectrumcurve,indicatingthatfewcrystaldefects
existintheZnONWarraysgrownontheAZOseedlayerat80◦C
for1h Itshouldbementioned herethatthesimilarresultsare
alsoobservedfortheZnONWarraysgrownontheAZOseedlayer
at80◦Cforlongergrowthtime.However,withtheincreasethe
hydrothermaltemperatureto130◦Corabove,arelativeweakband
for 1 h at 80, 130 and 180 ◦ C, respectively.
between390and420nmcanbeclearlyobservedasshowninthe insetofFig.7,indicatingthatsomecrystaldefectsstarttooccurdue
tohighergrowthtemperature,whichmayleadtothered-shiftof thePLpeaksandthedecreaseofthePLpeaksinintensity.Thatisto say,withtheincreasethehydrothermaltemperature,the dissolu-tionrateofthe[OH]−willbeintensifiedonthesurfaceoftheZnO NWs,anditisprobablytoleadtomorecrystaldefectsintheZnO NWsduetothecorrosivenessoftheaqueoussolution
AsshowninFig.1,thesiliconsubstrateisfirstpatternedwithEB resistandEBexposal,thenthelowsurfaceenergycoatingoverthe outsideofthepatternedregionisderivedbythesurfacefluorizated processonthesiliconsubstratebyusingfluoricorganicsolvents
Fig 9.SEM images of the patterned ZnO NW arrays (a) top-view of the ZnO NW arrays, (b) line width of 1 m, (c) line width of 500 nm, (d) line width of 200 nm, (e) line
Trang 710140 J Zhang et al / Applied Surface Science257 (2011) 10134– 10140
380 390 400 410 420 430 440 450
0.0
2.0x105
4.0x105
6.0x105
8.0x105
1.0x106
1.2x106
Wavelength / nm
Wavelength / nm
Fig 10. PL spectra of the patterned ZnO NW arrays grown on the AZO seed layer at
80 ◦ C for 1 h.
Itshouldbementionedherethatthiskindofsurfacefluorination
techniqueisauniversalmethodforpatterningsol–gelthinfilms
Thus,whentheAZOsolisspin-coatedonthesiliconsubstrate,the
AZOsolcannotbedepositedonthelowsurfaceenergyregiondue
toitslow adhesion,buttheAZOsolcanbefirmlydepositedon
thosepatternedregions.Inadditionto,thisprocesscaneliminate
theeffectoftheresistontheboundaryofthepatternedAZOseed
layer.Inordertoachieveagoodphotoluminescenceproperty,the
patternedZnONWarraysareonlygrownat80◦Cfor1h.Images
ofthepatternedZnONWarraysareshowninFig.9.Itcanbeseen
thattheZnONWarrayscanbeselectivelyandsharplygrownon
thepatternedregionsoftheAZOseedlayer.Fig.9(a)showsthe
patternedZnONWarraysatalargefeaturesizearea.Fig.9(b)–(g)
showtheas-grownZnONWarraysonthepatternedregionswith
awidthof1m,500nm,200nm,100nm,and50nm,respectively
ItcanbeclearlyobservedfromFig.9thatverticallyalignedZnO
NWarrays canbeeasilygrownonthepatternedregions ofthe
AZOseedlayer.Theas-grownZnONWarrays showanacicular
morphology,andtheaveragelengthanddiameteroftheZnONWs
arearound1mand50nm,respectively.Fig.10showstheroom
temperaturePLspectrum(exciteat365nm,1nmslitwidth)ofthe
patternedZnONWarraysgrownontheAZOseedlayers.Itisfound
thatonlyasharpandstrongUVpeakat380nmdominatesthePL
spectrum.TheinsetshowsthepartialenlargedPLspectrumfrom
390to420nm,andnootherpeaksareobservedinthecurve.These
resultsindicatethattherearefewcrystaldefectstoexistinthe
patternedZnONWarraysgrownonthesol–gelderivedAZOseed
layeratthehydrothermaltemperatureof80◦Cfor1h
4 Conclusions
TheverticallyalignedZnONWarrayshavebeensuccessfully
grownontheAZOseedlayerbythehydrothermalmethod.Effects
ofthehydrothermal parametersonthemorphologicaland
pho-toluminescencepropertiesoftheZnONWarrayshavebeenalso
studied.Resultsindicatethatthefastestgrowthrateofthe
ZnO-NWAcanbeobtainedat130◦CandtheZnO-NWAhasthehigher
aspectratiothanthatoftheZnO-NWZduetotheeffectofthe
Al-dopingontheseedlayer.Furthermore,thepatternedZnO-NWA
arrayswithstrongPLemissionandfewcrystaldefectshavebeen
obtainedbycombiningthesol–gelprocesswiththeelectron-beam
lithographyprocess,aswellasthesurfacefluorinationtechnique,
whichisprobablysuitablefortheapplicationsintheluminescent
andelectronfieldemissiondevices
Acknowledgments
ThisworkwassupportedbytheMinistryofScienceand
Tech-nologyofChinathrough863-projectundergrant2009AA03Z218,
theMajorProgramoftheNationalNaturalScienceFoundationof Chinaundergrantno.90923012,andXi’anAppliedMaterials Inno-vationFund(XA-AM-200909)
Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.apsusc.2011.06.163
References
[1] Z.W Pan, Z.R Dai, Z.L Wang, Nanobelts of semiconducting oxides , Science 291 (2001) 1947–1949.
[2] M.H Huang, Y.Y Wu, H Feick, N Tran, E Weber, P Yang, Catalytic growth
of zinc oxide nanowires by vapor transport , Adv Mater (Weinheim Ger.) 13 (2001) 113–116.
[3] Y Liu, Z.H Chen, Z.H Kang, I Bello, X Fan, I Shafiq, W.J Zhang, S.T Lee,
In situ self-catalytic synthesis of ZnO nanostructures in air: tetrapods, nano-tetraspikes and nanowires , J Phys Chem C 112 (2008) 9214–9218 [4] P.D Yang, H.Q Yan, S Mao, R Russo, J Johnson, R Saykally, N Morris, J Pham, R.R He, H.J Choi, Controlled growth of ZnO nanowires and their optical prop-erties , Adv Funct Mater 12 (2002) 323–331.
[5] C Soci, A Zhang, B Xiang, S.A Dayeh, D.P.R Aplin, J Park, X.Y Bao, Y.H Lo, D Wang, ZnO nanowire UV photodetectors with high internal gain , Nano Lett 7 (2007) 1003–1009.
[6] Y.K Tseng, C.J Huang, H.M Cheng, I.N Lin, K.S Liu, I.C Chen, Characteriza-tion and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films , Adv Funct Mater 13 (2003) 811–814 [7] M Law, L.E Greene, J.C Johnson, R Saykally, P.D Yang, Nanowire dye-sensitized solar cells , Nat Mater 4 (2005) 455–459.
[8] X.D Wang, J.H Song, P Li, J.H Ryou, R.D Dupuis, C.J Summers, Z.L Wang, Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al 0.5 Ga 0.5 N substrates , J Am Chem Soc 127 (2005) 7920–7923 [9] H.J Fan, W Lee, R Hauschild, M Alexe, G.L Rhun, R Scholz, A Dadgar, K Nielsch,
H Kalt, A Krost, M Zacharias, U Gösele, Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications , Small 2 (2006) 561–568.
[10] J.S Jie, G.Z Wang, Y.M Chen, X.H Han, Q.T Wang, B Xu, J.G Hou, Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film , Appl Phys Lett 86 (2005) 031909.
[11] Z.Q Xu, H Deng, Y Li, Q.H Guo, Y.R Li, Characteristics of Al-doped c-axis ori-entation ZnO thin films prepared by the sol–gel method , Mater Res Bull 41 (2006) 354–358.
[12] W Tang, D.C Cameron, Aluminium-doped zinc oxide transparent conductors deposited by the sol–gel process , Thin Solid Films 238 (1994) 83–87 [13] A Ohtani, K.S Stevens, R Beresford, Microstructure and photoluminescence
of GaN grown on Si(1 1 1) by plasma–assisted molecular beam epitaxy , Appl Phys Lett 65 (1994) 61.
[14] T Lei, T.D Moustakas, R.J Graham, Y He, S.J Berkowitz, Epitaxial growth and characterization of zinc–blende gallium nitride on (0 0 1) silicon , J Appl Phys.
71 (1992) 4933–4943.
[15] P.F Carcia, R.S McLean, M.H Reilly, G Nnues, Transparent ZnO thin-film tran-sistor fabricated by rf magnetron sputtering , Appl Phys Lett 82 (2003) 1117 [16] T.F Chung, J.A Zapien, S.T Lee, Luminescent properties of ZnO nanorod arrays grown on Al: ZnO buffer layer , J Phys Chem C 112 (2008) 820–824 [17] Z.H Chen, Y.B Tang, Y Liu, G.D Yuan, W.F Zhang, J.A Zapien, I Bello, W.J Zhang, C.S Lee, S.T Lee, ZnO nanowire arrays grown on Al:ZnO buffer lay-ers and their enhanced electron field emission, J , Appl Phys 106 (2009) 064303/1–164303/6.
[18] J Zhang, W.X Que, Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method , Sol Energy Mater Sol Cells 94 (2010) 2181–2186 [19] Y.S Kim, W.P Tai, Electrical and optical properties of Al-doped ZnO thin films
by sol–gel process , Appl Surf Sci 253 (2007) 4911–4916.
[20] X.J Feng, K Shankar, O.K Varghese, M Paulose, T.J Latempa, C.A Grimes, Verti-cally aligned single crystal TiO 2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications , Nano Lett.
11 (2008) 3781–3786.
[21] E Burstein, Anomalous optical absorption limit in InSb , Phys Rev 93 (1954) 632–633.
[22] T.S Moss, The Interpretation of the properties of indium antimonide , Proc Phys Soc Lond B 67 (1954) 775–782.
[23] K Yu, Z.G Jin, X.X Liu, J Zhao, J.Y Feng, Shape alterations of ZnO nanocrys-tal arrays fabricated from NH 3 H 2 O solutions , Appl Surf Sci 253 (2007) 4072–4078.
[24] X.L Hu, Y Masuda, T Ohji, K Kato, Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate , Langmuir 24 (2008) 7614–7617 [25] H.H Guo, J.Z Zhou, Z.H Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches , Electrochem Commun 10 (2008) 146–150 [26] C.C Yang, S.Y Cheng, H.Y Lee, S.Y Chen, Effects of phase transformation on photoluminescence behavior of ZnO:Eu prepared in different solvents , Ceram Int 32 (2006) 37–41.
[27] F.H Zhao, W.J Lin, M.M Wu, N.S Xu, X.F Yang, Z.R Tian, Q Su, Hexagonal and