Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 34 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
34
Dung lượng
660,27 KB
Nội dung
Ebooktoan.com HÀM SỐ VÀỨNGDỤNGCỦA HÀM SỐ A. KIẾN THỨC CẦN NẮM Chương I ĐẠO HÀM – VI PHÂN I. ĐẠO HÀMCỦA CÁC HÀMSỐSƠ CẤP CƠ BẢN CẦN NẮM Nhóm Đạo hàmcủa các hàmsố hợp (u = u(x)) Đạo hàmcủa các hàmsốsơ cấp cơ bản Đa thức Lượng giác (sinu) ’ = u ’ .cosu (cosu) ’ = - u ’ .sinu (tgu) ’ = (cotgu) ’ = - (sinx) ’ = cosx (cosx) ’ = - sinx (tgx) ’ = (cotgx) ’ = - Mũ (e u ) ’ = u ’ .e u (a u ) ’ = u ’ .a u .lna (e x ) ’ = e x (a x ) ’ = a x .lna CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com Lôgarit (ln|u|) ’ = u u ' (ln|x|) ’ = x 1 II. VI PHÂN: 1. Định nghĩa: df(x) = f ’ (x).dx 2. Qui tắc: • d(u ± v) = du ± dv • d(uv) = udv + vdu • Chương II ỨNG DỤNGCỦA ĐẠO HÀM I. ĐỊNH LÝ LAGRĂNG: Nếu hàmsố y = f(x) liên tục trên đoạn [a ; b] và có đạo hàm trong (a ; b) thì tồn tại điểm c ∈ (a ; b) sao cho: f ’ (c) = II. TÍNH ĐƠN ĐIỆU CỦAHÀM SỐ: 1. Hàmsố không đổi: f ’ (x) = 0 ⇔ f(x) = c 2. Điều kiện cần: f(x) có đạo hàm trong (a ; b) a) Nếu f(x) tăng trong (a ; b) ⇒ f ’ (x) ≥ 0 ∀ x ∈ (a ; b) b) Nếu f(x) giảm trong (a ; b) ⇒ f ’ (x) ≤ 0 ∀ x ∈ (a ; b) CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com 3. Điều kiện đủ: f(x) có đạo hàm trong (a ; b) a) Nếu f ’ (x) > 0 ∀x ∈ (a ; b) ⇒ f(x) tăng trong (a ; b) b) Nếu f ’ (x) < 0 ∀x ∈ (a ; b) ⇒ f(x) giảm trong (a ; b) • Chú ý: Nếu trong điều kiện đủ, nếu f ’ (x) = 0 tại một số hữu hạn điểm thuộc (a ; b) thì kết luận vẫn đúng. III. QUY TẮC TÌM ĐIỂM CỰC TRỊ CỦAHÀMSỐ y = f(x) Qui tắc 1: 1) Tính đạo hàm y ’ = f ’ (x) 2) Tìm các điểm tới hạn x i- : Là nghiệm của phương trình f ’ (x) = 0 hoặc tại các điểm đó f ’ (x) không xác định 3) Lập bảng xét dấu của f ’ (x) 4) Tại mỗi điểm x i mà qua đó nếu: a) f ’ (x) đổi dấu từ âm sang dương thì f(x) đạt cực tiểu tại điểm đó b) f ’ (x) đổi dấu từ dương sang âm thì f(x) đạt cực đại tại điểm đó c) f ’ (x) không đổi dấu thì f(x) không đạt cực trị tại điểm đó Qui tắc 2: 1) Tính f ’ (x), f ’’ (x) 2) Tìm các điểm x i tại đó f ’ (x) = 0 (nghiệm của phương trình này) 3) Tính f ’’ (x i ): a) Nếu f ’’ (x i ) > 0 thì f(x) đạt cực tiểu tại điểm đó b) Nếu f ’’ (x i ) < 0 thì f(x) đạt cực đại tại điểm đó CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com CHÚ Ý: • Giữa hai điểm tới hạn kề nhau x 1 và x 2 , f ’ (x) luôn giữ nguyên một dấu • Cách tính giá trị điểm cực trị củahàm số: - Trong trường hợp điểm cực trị x 0 (x CĐ , x CT ) là số vô tỉ thì: 1) Nếu f(x) là hàm hữu tỉ thì 2) Nếu f(x) là hàm đa thức: Ví dụ hàm đa thức bậc 3 f(x) = ax 3 + bx 2 + cx + d (a ≠ 0) Ta chia f(x) cho f ’ (x) được dư là hàm bậc nhất (mx + n) vậy ta có: f(x) = f ’ (x).(px + q) + (mx + n) thì f(x 0 ) = (mx 0 + n) (vì f ’ (x 0 ) = 0) VD: Hãy tìm các điểm cực trị và giá trị của chúng trong các trường hợp sau: 1) 2) f(x) = IV. GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦAHÀMSỐ 1. Qui tắc tìm GTLN, GTNN củahàmsố y = f(x) trên khoảng (a ; b) - Lập bảng biến thiên củahàmsố để kết luận, chú ý: + Nếu chỉ có một điểm cực tiểu x 0 thì f(x 0 ) = Min y + Nếu chỉ có một điểm cực đại x 0 thì f(x 0 ) = Max y + Nếu có cả điểm cực đại và cực tiểu thì ta phải tìm thêm giới hạn của f(x) tại các biên a, b để kết luận thích hợp. 2. Qui tắc tìm GTLN, GTNN củahàmsố y = f(x) trên đoạn [a ; b] - Giải phương trình f ’ (x) = 0, tìm các nghiệm x 1 , x 2, …, x n CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com (Chỉ chọn các nghiệm thuộc đoạn [a ; b]) - Tính f(a),f(b), f(x 1 ), f(x 2 ) , …, f(x n ) - So sánh f(a), f(b), f(x 1 ), f(x 2 ) , …, f(x n ) Số lớn nhất M là GTLN củahàmsố y = f(x) trên đoạn [a ; b], KH: M = Số nhỏ nhất m là GTNN củahàmsố y = f(x) trên đoạn [a ; b], KH: m = CHÚ Ý: • Nếu giải phương trình f ’ (x) = 0 vô nghiệm ⇒ f(x) đơn điệu trên [a ; b] ta chỉ cần so sánh f(a) và f(b): Số lớn là Max y vàsố nhỏ là Min y. • Ngoài ra ta có thể dùng các phương pháp sau: Dùng bất đẳng thức để tìm GTNN, GTLN củahàmsố (xem chuyên đề bất đẳng thức) Giải phương trình f(x) = y với x ∈ [a ; b] và tìm điều kiện để phương trình có nghiệm trong [a ; b] V. TÍNH LỒI LÕM VÀ ĐIỂM UỐN CỦA MỘT ĐƯỜNG CONG 1. Dấu hiệu lồi, lõm: Giả sử hàmsố y = f(x) có đạo hàm cấp hai f ’’ (x) trên khoảng (a ; b) khi đó: a) Nếu f ’’ (x) < 0 với mọi x ∈ (a ; b) thì đồ thị củahàmsố là lồi trên khoảng đó b) Nếu f ’’ (x) > 0 với mọi x ∈ (a ; b) thì đồ thị củahàmsố là lõm trên khoảng đó CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com 2. Điểm uốn: Giả sử hàmsố y = f(x) có đạo hàm cấp hai f ’’ (x) trên khoảng (a ; b) khi đó: a) Nếu f ’’ (x) đổi dấu khi đối số x đi qua x 0 thì M 0 (x 0 ; f(x 0 )) là một điểm uốn của đồ thị b) Nếu f ’’ (x) không đổi dấu khi đối số x đi qua x 0 thì điểm M 0 (x 0 ; f(x 0 )) không phải là điểm uốn của đồ thị. VI. TIỆM CẬN CỦA ĐƯỜNG CONG (C): y = f(x) 1. Tiệm cận đứng • Nếu thì đường thẳng x = x o là tiệm cận đứngcủa (C) 2. Tiệm cận ngang • Nếu y o thì đường thẳng y = y o là tiệm cận ngang của (C) 3. Tiệm cận xiên • Đường thẳng (d) có phương trình y = ax + b là một tiệm cận xiên của (C) ⇔ [f(x) – (ax +b)] = 0 • Cách xác định hệ số a, b của đường tiệm cận xiên y = ax +b theo công thức: a = , b = [f(x) – ax ] 4. Phương pháp tìm tiệm cận của (C): y = f(x): - Tìm TXĐ của f(x) là D suy ra các mút (biên) của nó - Tính giới hạn củahàmsố tại các mút + Nếu thoả mãn (1), (2) thì ta có TC đứng, ngang. CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com + Nếu thì ta tính a = : • Nếu a ≠ 0, thì ta tính b = [f(x) – ax ]. Nếu b ≠ thì ta có tiệm cận xiên: y = ax + b. VII. KHẢO SÁT HÀMSỐ 1. Các bước khảo sát 1 hàm số: B 1 : Tìm TXĐ B 2 : Xét sự biến thiên (đồng biến, nghịch biến) củahàmsốvà chỉ ra các điểm cực trị (cực đại, cực tiểu) B 3 : • Tính các giới hạn đặc biệt (tại các mút của TXĐ) • Tìm các tiệm cận (Đối với các hàm phân thức hữu tỉ B 4 : Xét tính lồi, lõm và tìm điểm uốn (Đối với các hàm đa thức) B 5 : Lập bảng biến thiên B 6 : Đồ thị: + Tìm giao điểm với trục Ox, Oy (nếu được) + Lập bảng giá trị nếu cần (khi tìm giao với Ox không được…) + Vẽ đồ thị + Nhận xét: Nêu tâm đối xứng, trục đối xứng (nếu có) của đồ thị. 2. Khảo sát một sốhàmsố thường gặp a) Hàm đa thức • y = ax 2 + bx + c (a ≠ 0) • y = ax 3 + bx 2 + cx + d (a ≠ 0) • y = ax 4 + bx 2 + c (a ≠ 0) CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com b) Hàm phân thức hữu tỉ • y = (c ≠ 0, D = ad – bc ≠ 0) B. CÁC DẠNG TOÁN CHỦ ĐIỂM 1 KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦAHÀMSỐ VẤN ĐỀ 1: TÌM CÁC ĐƯỜNG TIỆM CẬN Tìm các đường tiệm cận của đồ thị các hàmsố sau: 1) 2) 3) 4) y = 5) y = 6) y = VẤN ĐỀ 2: KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA CÁC HÀMSỐ THƯỜNG GẶP Bài 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàmsố bậc ba sau: 1) y = 2x 3 – 9x 2 + 12x – 4 (ĐH KA – 2006) 2) y = -x 3 + 3x 2 - 4 (ĐH KB – 2007) Bài 2: Khảo sát sự biến thiên và vẽ đồ thị của các hàmsố trùng phương sau: 1) y = x 4 - 8x 2 + 10 (ĐH KB – 2002) 2) (ĐH DB KA – 2006) Bài 3: Khảo sát sự biến thiên và vẽ đồ thị của các hàmsố nhất biến sau: CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com 1) (ĐH KD – 2002) 2) (ĐH KB – 2007) VẤN ĐỀ 3: ĐỒ THỊ CỦAHÀM CHỨA DẤU TRỊ TUYỆT ĐỐI PHƯƠNG PHÁP: Nếu hàmsố y = f(x) có chứa dấu giá trị tuyệt đối thì: • Xét dấu các biểu thức bên trong dấu giá trị tuyệt đối. • Phân định miền xác định thành nhiều khoảng, trong mỗi khoảng ta bỏ dấu giá trị tuyệt đối. • Vẽ đồ thị từng phần tương ứng trong các khoảng của miền xác định. Đồ thị của f(x) là hợp của các phần này. Các hàm có dạng: y = |f(x)| , y = f(|x|) ♦ Hàmsố dạng: y = |f(x)| - Vẽ đồ thị hàmsố y = f(x) (C) - Lấy phần đồ thị của (C) ở phía trên Ox - Lấy đối xứng phần (C) nằm dưới Ox qua trục Ox. Hợp hai phần trên lại ta có đồ thị (C ’ ) của y = |f(x)| ♦ Hàmsố dạng: y = f(|x|) (Là hàmsố chẵn: Có đồ thị đối xứng qua Oy) - Vẽ đồ thị hàmsố y = f(x) (C) - Lấy phần bên phải Oy của (C) (ứng với x ≥ 0) ta có (C 0 ) - Lấy đối xứng phần (C 0 ) qua trục Oy ta có (C 1 ) CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý Ebooktoan.com Hợp hai phần (C 0 ) và (C 1 ) trên lại ta có đồ thị (C ’ ) của y = f(|x|) BÀI TẬP TỰ LUYỆN: 1) Khảo sát và vẽ đồ thị (C) củahàm số: y = f(x) = 2) Từ (C) hãy suy ra đồ thị của các hàm số: a) y = b) y = c) y = d) y = 3) Một số bài toán áp dụng (bài giảng) CHỦ ĐIỂM 2 MỘT SỐ DẠNG TOÁN ỨNGDỤNGHÀMSỐ VẤN ĐỀ 1 PHƯƠNG TRÌNH TIẾP TUYẾN CỦA ĐỒ THỊ CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths. Trương Nhật Lý [...]... Bài 4: Cho hàmsố Tìm m để hàmsố đạt cực đại và cực tiểu tại các điểm có hoành độ lớn hơn m (ĐS : m < -2) Bài 5: Tìm m để hàmsố đạt cực trị tại các điểm có hoành độ x > m CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths Trương Nhật Lý Ebooktoan.com Bài 6: Cho hàmsố Tìm m để hàmsố có cực trị (ĐS : |m| < 1) Bài 7: Định m để hàmsố có ba điểm cực trị ĐS : Bai 8: Với giá trị nào của a thì hàmsố trên... hàm số: (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố khi m = 1 2) CMR với mọi m, (Cm) luôn có điểm cực đại và điểm cực tiểu và khoảng cách giữa 2 điểm đó bằng (ĐH KB – 2005) Bài 12: Cho hàm số: (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố khi m = 2) Tìm m để hàmsố có cực trị và khoảng cách từ điểm cực tiểu của (Cm) đến tiệm cận xiên của (Cm) bằng (ĐH K A – 2005) Bài 13: Cho hàm. .. phân biệt Bài 7: Cho hàm số: y = - 2x2 + 3x (C) (ĐH KB – 2004) 1) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố trên 2) Viết phương trình tiếp tuyến Δ của (C) tại điểm uốn và chứng minh rằng Δ là tiếp tuyến của (C) có hệ số góc nhỏ nhất Bài 8: Cho hàm số: y = x3 – 3mx2 + 9x + 1 (Cm) (ĐH KD – 2004) 1) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố khi m = 2 2) Tìm m để điểm uốn của (Cm) thuộc đường... tuyến của (C) tại M cắt hai trục Ox, Oy lần lượt tại A và B sao cho tam giác OAB có diện tích bằng Bài 17: Cho hàm số: y = - x3 + 3x2 + 3(m2 – 1)x – 3m2 - 1 (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố khi m = 1 2) Tìm m để hàmsố trên có cực đại, cực tiểu và các điểm cực trị của (Cm) cách đều gốc tọa độ O (ĐH KB – 2007) Bài 18: Cho hàm số: (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị củahàm số. .. 2) Tìm m để hàmsố trên có cực đại và cực tiểu, đồng thời các điểm cực trị của (Cm) cùng với gốc tọa độ O tạo thành một tam giác vuông tại O (ĐH KA – 2007) Bài 19: Cho hàm số: (1) (m là tham số) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của đồ thị hàmsố (1) ứng với m = −1 2) Tìm các giá trị của m để góc giữa hai đường tiệm cận của đồ thị hàmsố (1) bằng 450 (ĐH KA-2008) Bài 20: Cho hàmsố y = 4x3-6x2... biến thiên và vẽ đồ thị hàmsố (1) 2) Viết phương trình tiếp tuyến của đồ thị hàmsố (1),biết rằng tiếp tuyến đó đi qua điểm M (-1;-9) (ĐH KB-2008) Bài 21: Cho (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàmsố (1) CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths Trương Nhật Lý Ebooktoan.com 2) Chứng minh rằng mọi đường thẳng đi qua I(1;2) với hệ số góc k ( k >−3) đều cắt đồ thị củahàmsố (1) tại 3... thị (C) có 2 điểm phân biết đối xứng nhau qua gốc tọa độ 2) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố khi m = 2 Bài 5: Cho hàm số: (Cm) (ĐH KA – 2003) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố khi m = -1 2) Tìm m để (C) cắt trục hoành tại hai điểm phân biệt có hoành độ dương Bài 6: Cho hàm số: (C) (ĐH KD – 2003) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố trên 2) Tìm m để đường thẳng... Cho hàm số: (C) (ĐH KA – 2004) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố trên 2) Tìm m để đường thẳng y = m cắt (C) tại hai điểm A, B sao cho AB = 1 Bài 10: Cho hàm số: y = – x2 + CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG (Cm) Trang Biên soạn: Ths Trương Nhật Lý Ebooktoan.com 1) Khảo sát sự biến thiên và vẽ đồ thị củahàmsố khi m = 2 2) Gọi M là điểm thuộc (Cm) có hoành độ bằng -1 Tìm m để tiếp tuyến của. .. hàm số: y = x3 – 3mx2 + 3(m2 - 1)x – m3 (Cm) CHUYÊN ĐỀ HÀMSỐ & ỨNGDỤNG Trang Biên soạn: Ths Trương Nhật Lý Ebooktoan.com Tìm m để (Cm) cắt trục hoành tại ba điểm phân biệt, trong đó có đúng hai điểm có hoành độ âm (ĐH QG TP HCM KA) Bài 27: Cho hàm số: (C) 1) Khảo sát và vẽ đồ thị (C) củahàmsố (ĐH QG TP HCM KD) 2) Từ (C) suy ra đồ thị (C1) củahàm số: 3) Dùng (C1) để biện luận theo m số nghiệm của. .. Cho hàmsố Tìm m để hàmsố y có cực đại, cực tiểu thỏa mãn: |yCĐ – yCT| > 8 (ĐS: ) Bài 5: Cho hàmsố a) Tìm m để hàmsố có cực trị b) Viết phương trình đường thẳng qua hai điểm cực trị của đồ thị hàmsố c) Tìm m để ymax + ymin = 2 ĐS: VẤN ĐỀ 3 TÍNH LỒI LÕM ĐIỂM UỐN CỦA ĐỒ THỊ (Ban NC) Bài 1: Chứng minh rằng đồ thị hàmsố có 3 điểm uốn thẳng hàng (Ba điểm uốn : A(1,1), B(-2,-1), C( ,0)) Bài 2: Cho hàm . HÀM SỐ VÀ ỨNG DỤNG CỦA HÀM SỐ A. KIẾN THỨC CẦN NẮM Chương I ĐẠO HÀM – VI PHÂN I. ĐẠO HÀM CỦA CÁC HÀM SỐ SƠ CẤP CƠ BẢN CẦN NẮM Nhóm Đạo hàm của các hàm số hợp (u = u(x)) Đạo hàm của các hàm số. c) y = d) y = 3) Một số bài toán áp dụng (bài giảng) CHỦ ĐIỂM 2 MỘT SỐ DẠNG TOÁN ỨNG DỤNG HÀM SỐ VẤN ĐỀ 1 PHƯƠNG TRÌNH TIẾP TUYẾN CỦA ĐỒ THỊ CHUYÊN ĐỀ HÀM SỐ & ỨNG DỤNG Trang Biên soạn:. điểm cực trị của đồ thị hàm số. (ĐS : y=2x+m+1) Bài 4: Cho hàm số . Tìm m để hàm số y có cực đại, cực tiểu thỏa mãn: |y CĐ – y CT | > 8 (ĐS: ) Bài 5: Cho hàm số a) Tìm m để hàm số có cực